A higher-order cumulant-based weighted least square(HOCWLS) and a higher-order cumulant-based iterative least square(HOCILS) are derived for multiple inputs single output(MISO) errors-in-variables(EIV) systems...A higher-order cumulant-based weighted least square(HOCWLS) and a higher-order cumulant-based iterative least square(HOCILS) are derived for multiple inputs single output(MISO) errors-in-variables(EIV) systems from noisy input/output data. Whether the noises of the input/output of the system are white or colored, the proposed algorithms can be insensitive to these noises and yield unbiased estimates. To realize adaptive parameter estimates, a higher-order cumulant-based recursive least square(HOCRLS) method is also studied. Convergence analysis of the HOCRLS is conducted by using the stochastic process theory and the stochastic martingale theory. It indicates that the parameter estimation error of HOCRLS consistently converges to zero under a generalized persistent excitation condition. The usefulness of the proposed algorithms is assessed through numerical simulations.展开更多
Multirate systems are abundant in industry; for example, many soft-sensor design problems are related to modeling, parameter identification, or state estimation involving multirate systems. The study of multirate syst...Multirate systems are abundant in industry; for example, many soft-sensor design problems are related to modeling, parameter identification, or state estimation involving multirate systems. The study of multirate systems goes back to the early 1950's, and has become an active research area in systems and control. This paper briefly surveys the history of development in the area of multirate systems, and introduces some basic concepts and latest results on multirate systems, including a polynomial transformation technique and the lifting technique as tools for handling multirate systems, lifted state space models, parameter identification of dual-rate systems, how to determine fast single-rate models from dual-rate models and directly from dual-rate data, and a hierarchical identification method for general multirate systems. Finally, some further research topics for multirate systems are given.展开更多
In this paper a method of aerodynamic parameter identification of vehicle, the maximum likelihood method, is introduced. The aerodynamic model of vehicle is identified and the basic equations using maximum likelihood ...In this paper a method of aerodynamic parameter identification of vehicle, the maximum likelihood method, is introduced. The aerodynamic model of vehicle is identified and the basic equations using maximum likelihood method are established. After that, the simulation data is identified to verify the correctness of the mathematic model and identification method. Last, the practical flight data is identified and analyzed.展开更多
随着风电渗透率的持续上升,电力系统的惯量水平显著下降,对系统频率稳定性构成了新的挑战。为有效评估风电并网情况下电力系统节点惯量的变化,提出了一种基于受控自回归滑动平均(autoregressive moving average with exogenous variable...随着风电渗透率的持续上升,电力系统的惯量水平显著下降,对系统频率稳定性构成了新的挑战。为有效评估风电并网情况下电力系统节点惯量的变化,提出了一种基于受控自回归滑动平均(autoregressive moving average with exogenous variable,ARMAX)模型的改进最大似然估计(maximum likelihood estimation,MLE)参数辨识方法对系统机组直接相连节点进行惯量评估。首先,构建ARMAX模型对发电机组直接相连节点的动态特性进行建模,并利用改进MLE对模型参数进行辨识,以评估与机组直接相连的节点惯量。然后,基于k-means聚类算法对发电机组节点惯量进行分区,计算得到系统区域惯量和中心频率,并进一步对非发电机组节点频率进行自适应多项式拟合计算,得到其系统节点惯量。最后,搭建IEEE39含风力发电机组节点系统,绘制热力图直观展示电力系统节点和区域的惯量分布,验证了所提改进方法的有效性。该方法有助于精准识别系统中不同节点的动态响应特性,为风电并网系统的分析和规划提供了有力支持。展开更多
针对电池电气特性与热特性之间复杂的耦合关系、温度对电池功率性能的影响以及荷电状态(state of charge,SOC)、温度状态(stateoftemperature,SOT)与峰值功率状态(state of power,SOP)之间的复杂关联等问题,该文提出一种考虑电热耦合特...针对电池电气特性与热特性之间复杂的耦合关系、温度对电池功率性能的影响以及荷电状态(state of charge,SOC)、温度状态(stateoftemperature,SOT)与峰值功率状态(state of power,SOP)之间的复杂关联等问题,该文提出一种考虑电热耦合特性的电池模组多状态协同估计方法。首先,分析电池电气特性与热特性之间的耦合关系,将分数阶等效电路模型与集总参数双态热模型结合,构建电池模组电热耦合模型。其次,针对电热耦合关系需要准确的SOC与SOT来维持的问题,采用自适应扩展卡尔曼算法(adaptive extended Kalman filter,AEKF)实现电池模组SOC与SOT估计。最后,分析不同状态之间的关联特性,将电池的SOC、SOT引入到多约束条件下的峰值SOP估计中,实现电池模组多状态协同估计,提高电池状态估计的准确性。仿真结果表明,所提方法在SOC初始误差为20%情况下,能够快速收敛至真实值,且均方根误差在0.52%以内,核心温度与表面温度估计误差分别在0.36和0.31℃以内。在40℃时,核心温度约束起作用,峰值功率估计结果显著降低,为动力电池的实时安全监控提供了有力保障。展开更多
基金supported by the National High Technology Researchand Development Program of China(863 Program)(2012AA121602)the Preliminary Research Program of the General Armament Department of China(51322050202)
文摘A higher-order cumulant-based weighted least square(HOCWLS) and a higher-order cumulant-based iterative least square(HOCILS) are derived for multiple inputs single output(MISO) errors-in-variables(EIV) systems from noisy input/output data. Whether the noises of the input/output of the system are white or colored, the proposed algorithms can be insensitive to these noises and yield unbiased estimates. To realize adaptive parameter estimates, a higher-order cumulant-based recursive least square(HOCRLS) method is also studied. Convergence analysis of the HOCRLS is conducted by using the stochastic process theory and the stochastic martingale theory. It indicates that the parameter estimation error of HOCRLS consistently converges to zero under a generalized persistent excitation condition. The usefulness of the proposed algorithms is assessed through numerical simulations.
基金Supported by the Natural Sciences and Engineering Research Council of Canada and National Natural Science Foundation of P.R.China
文摘Multirate systems are abundant in industry; for example, many soft-sensor design problems are related to modeling, parameter identification, or state estimation involving multirate systems. The study of multirate systems goes back to the early 1950's, and has become an active research area in systems and control. This paper briefly surveys the history of development in the area of multirate systems, and introduces some basic concepts and latest results on multirate systems, including a polynomial transformation technique and the lifting technique as tools for handling multirate systems, lifted state space models, parameter identification of dual-rate systems, how to determine fast single-rate models from dual-rate models and directly from dual-rate data, and a hierarchical identification method for general multirate systems. Finally, some further research topics for multirate systems are given.
文摘In this paper a method of aerodynamic parameter identification of vehicle, the maximum likelihood method, is introduced. The aerodynamic model of vehicle is identified and the basic equations using maximum likelihood method are established. After that, the simulation data is identified to verify the correctness of the mathematic model and identification method. Last, the practical flight data is identified and analyzed.
文摘随着风电渗透率的持续上升,电力系统的惯量水平显著下降,对系统频率稳定性构成了新的挑战。为有效评估风电并网情况下电力系统节点惯量的变化,提出了一种基于受控自回归滑动平均(autoregressive moving average with exogenous variable,ARMAX)模型的改进最大似然估计(maximum likelihood estimation,MLE)参数辨识方法对系统机组直接相连节点进行惯量评估。首先,构建ARMAX模型对发电机组直接相连节点的动态特性进行建模,并利用改进MLE对模型参数进行辨识,以评估与机组直接相连的节点惯量。然后,基于k-means聚类算法对发电机组节点惯量进行分区,计算得到系统区域惯量和中心频率,并进一步对非发电机组节点频率进行自适应多项式拟合计算,得到其系统节点惯量。最后,搭建IEEE39含风力发电机组节点系统,绘制热力图直观展示电力系统节点和区域的惯量分布,验证了所提改进方法的有效性。该方法有助于精准识别系统中不同节点的动态响应特性,为风电并网系统的分析和规划提供了有力支持。
文摘针对电池电气特性与热特性之间复杂的耦合关系、温度对电池功率性能的影响以及荷电状态(state of charge,SOC)、温度状态(stateoftemperature,SOT)与峰值功率状态(state of power,SOP)之间的复杂关联等问题,该文提出一种考虑电热耦合特性的电池模组多状态协同估计方法。首先,分析电池电气特性与热特性之间的耦合关系,将分数阶等效电路模型与集总参数双态热模型结合,构建电池模组电热耦合模型。其次,针对电热耦合关系需要准确的SOC与SOT来维持的问题,采用自适应扩展卡尔曼算法(adaptive extended Kalman filter,AEKF)实现电池模组SOC与SOT估计。最后,分析不同状态之间的关联特性,将电池的SOC、SOT引入到多约束条件下的峰值SOP估计中,实现电池模组多状态协同估计,提高电池状态估计的准确性。仿真结果表明,所提方法在SOC初始误差为20%情况下,能够快速收敛至真实值,且均方根误差在0.52%以内,核心温度与表面温度估计误差分别在0.36和0.31℃以内。在40℃时,核心温度约束起作用,峰值功率估计结果显著降低,为动力电池的实时安全监控提供了有力保障。