It has been challenging to correctly separate the mixed signals into source components when the source number is not known a priori.To reveal the complexity of the measured vibration signals,and provide the priori inf...It has been challenging to correctly separate the mixed signals into source components when the source number is not known a priori.To reveal the complexity of the measured vibration signals,and provide the priori information for the blind source separation,in this paper,we propose a novel source number estimation based on independent component analysis(ICA)and clustering evaluation analysis,and then carry out experiment studies with typical mechanical vibration signals from a shell structure.The results demonstrate that the proposed ICA based source number estimation performs stably and robustly for the shell structure.展开更多
By using the sparsity of frequency hopping(FH) signals,an underdetermined blind source separation(UBSS) algorithm is presented. Firstly, the short time Fourier transform(STFT) is performed on the mixed signals. ...By using the sparsity of frequency hopping(FH) signals,an underdetermined blind source separation(UBSS) algorithm is presented. Firstly, the short time Fourier transform(STFT) is performed on the mixed signals. Then, the mixing matrix, hopping frequencies, hopping instants and the hooping rate can be estimated by the K-means clustering algorithm. With the estimated mixing matrix, the directions of arrival(DOA) of source signals can be obtained. Then, the FH signals are sorted and the FH pattern is obtained. Finally, the shortest path algorithm is adopted to recover the time domain signals. Simulation results show that the correlation coefficient between the estimated FH signal and the source signal is above 0.9 when the signal-to-noise ratio(SNR) is higher than 0 d B and hopping parameters of multiple FH signals in the synchronous orthogonal FH network can be accurately estimated and sorted under the underdetermined conditions.展开更多
A dimension decomposition(DIDE)method for multiple incoherent source localization using uniform circular array(UCA)is proposed.Due to the fact that the far-field signal can be considered as the state where the range p...A dimension decomposition(DIDE)method for multiple incoherent source localization using uniform circular array(UCA)is proposed.Due to the fact that the far-field signal can be considered as the state where the range parameter of the nearfield signal is infinite,the algorithm for the near-field source localization is also suitable for estimating the direction of arrival(DOA)of far-field signals.By decomposing the first and second exponent term of the steering vector,the three-dimensional(3-D)parameter is transformed into two-dimensional(2-D)and onedimensional(1-D)parameter estimation.First,by partitioning the received data,we exploit propagator to acquire the noise subspace.Next,the objective function is established and partial derivative is applied to acquire the spatial spectrum of 2-D DOA.At last,the estimated 2-D DOA is utilized to calculate the phase of the decomposed vector,and the least squares(LS)is performed to acquire the range parameters.In comparison to the existing algorithms,the proposed DIDE algorithm requires neither the eigendecomposition of covariance matrix nor the search process of range spatial spectrum,which can achieve satisfactory localization and reduce computational complexity.Simulations are implemented to illustrate the advantages of the proposed DIDE method.Moreover,simulations demonstrate that the proposed DIDE method can also classify the mixed far-field and near-field signals.展开更多
基金supported by China Postdoctoral Science Foundation (No. 2013M532032)National Nature Science Foundation of China (No. 51305329, 51035007)+1 种基金the Doctoral Foundation of Education Ministry of China (No. 20130201120040)the Shaanxi Postdoctoral Scientific research project
文摘It has been challenging to correctly separate the mixed signals into source components when the source number is not known a priori.To reveal the complexity of the measured vibration signals,and provide the priori information for the blind source separation,in this paper,we propose a novel source number estimation based on independent component analysis(ICA)and clustering evaluation analysis,and then carry out experiment studies with typical mechanical vibration signals from a shell structure.The results demonstrate that the proposed ICA based source number estimation performs stably and robustly for the shell structure.
基金supported by the National Natural Science Foundation of China(6120113461201135)+2 种基金the 111 Project(B08038)the Fundamental Research Funds for the Central Universities(72124669)the Open Research Fund of the Academy of Application(2014CXJJ-TX06)
文摘By using the sparsity of frequency hopping(FH) signals,an underdetermined blind source separation(UBSS) algorithm is presented. Firstly, the short time Fourier transform(STFT) is performed on the mixed signals. Then, the mixing matrix, hopping frequencies, hopping instants and the hooping rate can be estimated by the K-means clustering algorithm. With the estimated mixing matrix, the directions of arrival(DOA) of source signals can be obtained. Then, the FH signals are sorted and the FH pattern is obtained. Finally, the shortest path algorithm is adopted to recover the time domain signals. Simulation results show that the correlation coefficient between the estimated FH signal and the source signal is above 0.9 when the signal-to-noise ratio(SNR) is higher than 0 d B and hopping parameters of multiple FH signals in the synchronous orthogonal FH network can be accurately estimated and sorted under the underdetermined conditions.
基金supported by the National Natural Science Foundation of China(62022091,61921001).
文摘A dimension decomposition(DIDE)method for multiple incoherent source localization using uniform circular array(UCA)is proposed.Due to the fact that the far-field signal can be considered as the state where the range parameter of the nearfield signal is infinite,the algorithm for the near-field source localization is also suitable for estimating the direction of arrival(DOA)of far-field signals.By decomposing the first and second exponent term of the steering vector,the three-dimensional(3-D)parameter is transformed into two-dimensional(2-D)and onedimensional(1-D)parameter estimation.First,by partitioning the received data,we exploit propagator to acquire the noise subspace.Next,the objective function is established and partial derivative is applied to acquire the spatial spectrum of 2-D DOA.At last,the estimated 2-D DOA is utilized to calculate the phase of the decomposed vector,and the least squares(LS)is performed to acquire the range parameters.In comparison to the existing algorithms,the proposed DIDE algorithm requires neither the eigendecomposition of covariance matrix nor the search process of range spatial spectrum,which can achieve satisfactory localization and reduce computational complexity.Simulations are implemented to illustrate the advantages of the proposed DIDE method.Moreover,simulations demonstrate that the proposed DIDE method can also classify the mixed far-field and near-field signals.