期刊文献+
共找到21,731篇文章
< 1 2 250 >
每页显示 20 50 100
All-solid-state Sodium-ion Batteries:A Leading Contender in the Next-generation Battery Race 被引量:1
1
作者 Rui-Jie Zhu Ze-Chen Li +3 位作者 Wei Zhang Akira Nasu Hiroaki Kobayashi Masaki Matsui 《电化学(中英文)》 北大核心 2024年第12期21-27,共7页
All-solid-state lithium-ion batteries(LIBs)using ceramic electrolytes are considered the ideal form of rechargeable batteries due to their high energy density and safety.However,in the pursuit of all-solid-state LIBs,... All-solid-state lithium-ion batteries(LIBs)using ceramic electrolytes are considered the ideal form of rechargeable batteries due to their high energy density and safety.However,in the pursuit of all-solid-state LIBs,the issue of lithium resource availability is selectively overlooked.Considering that the amount of lithium required for all-solidstate LIBs is not sustainable with current lithium resources,another system that also offers the dual advantages of high energy density and safetydall-solid-state sodium-ion batteries(SIBs)dholds significant sustainable advantages and is likely to be the strong contender in the competition for developing next-generation high-energy-density batteries.This article briefly introduces the research status of all-solid-state SIBs,explains the sources of their advantages,and discusses potential approaches to the development of solid sodium-ion conductors,aiming to spark the interest of researchers and attract more attention to the field of all-solid-state SIBs. 展开更多
关键词 All-solid-state sodium-ion batteries All-solid-state lithium-ion batteries Solid-state electrolyte Sodium super ionic conductor Machine learning
在线阅读 下载PDF
Microwave-enabled rapid,continuous,and substrate-free synthesis of few-layer graphdiyne nanosheets for enhanced potassium metal battery performance 被引量:1
2
作者 KONG Ya ZHANG Shi-peng +6 位作者 YIN Yu-ling ZHANG Zi-xuan FENG Xue-ting DING Feng ZHANG Jin TONG Lian-ming GAO Xin 《新型炭材料(中英文)》 北大核心 2025年第3期642-650,共9页
Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.... Graphdiyne(GDY)is a two-dimensional carbon allotrope with exceptional physical and chemical properties that is gaining increasing attention.However,its efficient and scalable synthesis remains a significant challenge.We present a microwave-assisted approach for its continuous,large-scale production which enables synthesis at a rate of 0.6 g/h,with a yield of up to 90%.The synthesized GDY nanosheets have an average diameter of 246 nm and a thickness of 4 nm.We used GDY as a stable coating for potassium(K)metal anodes(K@GDY),taking advantage of its unique molecular structure to provide favorable paths for K-ion transport.This modification significantly inhibited dendrite formation and improved the cycling stability of K metal batteries.Full-cells with perylene-3,4,9,10-tetracarboxylic dianhydride(PTCDA)cathodes showed the clear superiority of the K@GDY anodes over bare K anodes in terms of performance,stability,and cycle life.The K@GDY maintained a stable voltage plateau and gave an excellent capacity retention after 600 cycles with nearly 100%Coulombic efficiency.This work not only provides a scalable and efficient way for GDY synthesis but also opens new possibilities for its use in energy storage and other advanced technologies. 展开更多
关键词 Graphdiyne Microwave-assisted synthesis Few-layer Potassium metal battery Dendrite-free
在线阅读 下载PDF
Ultra-stable lithium-sulfur batteries using nitrogen-doped porous carbon nanosheets implanted with both Fe and Ni
3
作者 Reddeppa Nadimicherla TANG You-chen +1 位作者 LU Yu-heng LIU Ru-liang 《新型炭材料(中英文)》 北大核心 2025年第1期188-199,共12页
The major problem with lithium-sulfur(Li-S)batteries is their poor cycling stability because of slow redox kinetics in the cathode and the growth of lithium dendrites on the anode.We report the production of 2D porous... The major problem with lithium-sulfur(Li-S)batteries is their poor cycling stability because of slow redox kinetics in the cathode and the growth of lithium dendrites on the anode.We report the production of 2D porous carbon nanosheets doped with both Fe and Ni(Fe/Ni-N-PCNSs)by an easy and template-free approach that solve this problem.Because of their ultrathin porous 2D structure and uniform distribution of Fe and Ni dopants,they capture polysulfides,speed up the sulfur redox reaction,and improve the material’s lithiophilicity,greatly suppressing the shuttling of polysulfides and dendrite growth on the lithium anode.As a result,it has an exceptional performance as a stable host for elemental sulfur and metallic lithium,producing a record long life of 1000 cycles with a very small capacity decay of 0.00025%per cycle in a Li-S battery and an excellent cycling stability of over 850 h with a small overpotential of>72 mV in a lithium metal battery.This work suggests the use of multifunctional-based 2D porous carbon nanosheets as a stable host for both elemental sulfur and metallic lithium to improve the Li-S battery per-formance. 展开更多
关键词 Li-S battery Porous carbon Lithium metal battery NANOSHEETS Redox kinetics
在线阅读 下载PDF
Digital twin outlook for all-vanadium redox flow batteries
4
作者 WANG Erqiang SANG Tengteng 《中国科学院大学学报(中英文)》 北大核心 2025年第5期577-588,共12页
Redox flow batteries have gained wide attention at home and abroad as a long-duration energy storage technology with the advantages of high safety,long lifespan,mutual independence of capacity and power,and easy recyc... Redox flow batteries have gained wide attention at home and abroad as a long-duration energy storage technology with the advantages of high safety,long lifespan,mutual independence of capacity and power,and easy recycling.However,the current battery management technology faces significant challenges,and there is room for development.Digital twin(DT),as a technology that collectively senses,evaluates,predicts,and optimizes characteristics,is promising to contribute to redox flow batteries’operation,maintenance,and management.This paper begins with a brief description of redox flow batteries,followed by a short explanation of the concept and application of DTs.DTs have already made some progress in the field of batteries,and can be applied to solve the problems of redox flow batteries in terms of thermal management and system optimization.Finally,the paper analyzes the combination of redox flow battery and DT architecture,which is expected to contribute to developing DT technology for redox flow batteries. 展开更多
关键词 redox flow battery digital twin battery management system
在线阅读 下载PDF
Photo-assisted Non-aqueous Lithium-oxygen Batteries:Preparation and Prospect of Photocathode Materials
5
作者 XUE Zhichao JIANG Sihai +3 位作者 RU Yingyi LI Jie LI Qiang SUN Hong 《发光学报》 北大核心 2025年第3期508-518,共11页
Photo-assisted Li-O2 batteries(LOBs)have remained a prominent and growing field over the past several years.However,the presence of slow oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),large charging ... Photo-assisted Li-O2 batteries(LOBs)have remained a prominent and growing field over the past several years.However,the presence of slow oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),large charging and discharging overpotentials,and unstable cycle life lead to low energy efficiency,thus limiting their commercial application.The rational design and synthesis of photocathode materials are effective ways to solve the above existing problems of photo-assisted LOB systems.Herein,the recent advances in the design and preparation of photocathode materials for photo-assisted LOBs were summarized in this review.First,we summarize the basic principles and comprehension of the reaction mechanism for photo-assisted LOBs.The second part introduces the latest research progress on photocathode materials.The third section describes the relationship between the structureproperties and electrochemistry of different photocathodes.In addition,attempts to construct efficient photocathode materials for photo-assisted LOBs through vacancy engineering,localized surface plasmon resonance(LSPR),and heterojunction engineering are mainly discussed.Finally,a discussion of attempts to construct efficient photocathode materials using other approaches is also presented.This work will motivate the preparation of stable and efficient photocathode materials for photo-assisted LOBs and aims to promote the commercial application of rechargeable photo-assisted LOBs energy storage. 展开更多
关键词 photo-assisted lithium-oxygen battery PHOTOCATALYSIS electrode design
在线阅读 下载PDF
Microstructure-mechanism-performance relationships in hard carbon anode materials for sodium-ion batteries
6
作者 LI Jin-ting Sawut Nurbiye +3 位作者 ZHAO Yi-chu LIU Ping WANG Yan-xia CAO Yu-liang 《新型炭材料(中英文)》 北大核心 2025年第4期860-869,共10页
The advantages of sodium-ion batteries(SIBs)for large-scale energy storage are well known.Among possible anode materials,hard carbon(HC)stands out as the most viable commercial option because of its superior performan... The advantages of sodium-ion batteries(SIBs)for large-scale energy storage are well known.Among possible anode materials,hard carbon(HC)stands out as the most viable commercial option because of its superior performance.However,there is still disagreement regarding the sodium storage mechanism in the low-voltage plateau region of HC anodes,and the structure-performance relationship between its complex multiscale micro/nanostructure and electrochemical behavior remains unclear.This paper summarizes current research progress and the major problems in understanding HC’s microstructure and sodium storage mechanism,and the relationship between them.Findings about a universal sodium storage mechanism in HC,including predictions about micropore-capacity relationships,and the opportunities and challenges for using HC anodes in commercial SIBs are presented. 展开更多
关键词 Sodium-ion battery Hard carbon ANODE Closed pore
在线阅读 下载PDF
Metal Nitrides as Cathode Hosts for Lithium-Sulfur Batteries
7
作者 Hai-Ji Xiong Cheng-Wei Zhu +1 位作者 Ding-Rong Deng Qi-Hui Wu 《电化学(中英文)》 北大核心 2025年第2期1-16,共16页
Lithium-sulfur batteries are considered as one of the potential solutions as integrating renewable energy systems for large-scale energy storage because of their high theoretical energy density(2600 Wh·kg^(-1))an... Lithium-sulfur batteries are considered as one of the potential solutions as integrating renewable energy systems for large-scale energy storage because of their high theoretical energy density(2600 Wh·kg^(-1))and specific capacity(1675 mAh·g^(-1)).Currently,various strategies have been proposed to overcome the technical barriers,e.g.,“shuttle effect”,capacity decay and volumetric change,which impede the successful commercialization of lithium-sulfur batteries.This paper reviews the applications of metal nitrides as the cathode hosts for high-performance lithium-sulfur batteries,summa-rizes the design strategies of different host materials,and discusses the relationship between the properties of metal nitrides and their electrochemical performances.Finally,reasonable suggestions for the design and development of metal nitrides,along with ideas to promote future breakthroughs,are proposed.We hope that this review could attract more attention to metal nitrides and their derivatives,and further promote the electrochemical performance of lithium-sulfur batteries. 展开更多
关键词 Lithium-sulfur batteries Metal nitride Host material
在线阅读 下载PDF
A review of strategies to produce a fast-charging graphite anode in lithium-ion batteries
8
作者 LIANG Jin QIN Ze +4 位作者 QUAN Zhong HAO Jing QIN Xian-ying LI Bao-hua KANG Fei-yu 《新型炭材料(中英文)》 北大核心 2025年第4期738-765,共28页
Lithium-ion batteries(LIBs)are an electrochemical energy storage technology that has been widely used for portable electrical devices,electric vehicles,and grid storage,etc.To satisfy the demand for user convenience e... Lithium-ion batteries(LIBs)are an electrochemical energy storage technology that has been widely used for portable electrical devices,electric vehicles,and grid storage,etc.To satisfy the demand for user convenience especially for electric vehicles,the development of a fast-charging technology for LIBs has become a critical focus.In commercial LIBs,the slow kinetics of Li+intercalation into the graphite anode from the electrolyte solution is known as the main restriction for fast-charging.We summarize the recent advances in obtaining fast-charging graphite-based anodes,mainly involving modifications of the electrolyte solution and graphite anode.Specifically,strategies for increasing the ionic conductivity and regulating the Li+solvation/desolvation state in the electrolyte solution,as well as optimizing the fabrication and the intrinsic activity of graphite-based anodes are discussed in detail.This review considers practical ways to obtain fast Li+intercalation kinetics into a graphite anode from the electrolyte as well as analysing progress in the commercialization of fast-charging LIBs. 展开更多
关键词 Fast charging GRAPHITE Lithium-ion batteries Electrolyte solution SOLVATION
在线阅读 下载PDF
Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries
9
作者 CHEN Xiaoli LUO Zhihong +3 位作者 XIONG Yuzhu WANG Aihua CHEN Xue SHAO Jiaojing 《无机化学学报》 北大核心 2025年第8期1661-1671,共11页
A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface... A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property. 展开更多
关键词 vermiculite nanosheets two-dimensional materials INTERLAYER shuttle effect lithium-sulfur batteries
在线阅读 下载PDF
Strategies for balancing catalytic activity and stability in lithium-sulfur batteries
10
作者 PENG Lin-kai SHI Ji-wei +3 位作者 CAO Yun LAN Jia-qi GENG Chuan-nan LV Wei 《新型炭材料(中英文)》 北大核心 2025年第4期889-908,共20页
Lithium-sulfur(Li-S)batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity(1675 mAh g^(-1))of sulfur with chemical conversion for charge storage.However,t... Lithium-sulfur(Li-S)batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity(1675 mAh g^(-1))of sulfur with chemical conversion for charge storage.However,their practical use is hindered by the slow redox kinetics of sulfur and the“shuttle effect”arising from dissolved lithium polysulfides(LiPSs).In recent years,various carbon-based materials have served as sulfur hosts and catalysts for accelerating sulfur conversion redox kinetics and alleviating LiPS shuttling.However,they often suffer from irreversible passivation and structural changes that destroy their long-term performance.We consider the main problems limiting their stability,including excessive LiPS adsorption,passivation by insulating Li2S,and surface reconstruction,and clarify how these factors lead to capacity fade.We then outline effective strategies for achieving long-term sulfur catalysis,focusing on functional carbon,such as designing suitable carbon-supported catalyst interfaces,creating well-distributed active sites,adding cocatalysts to improve electron transfer,and using carbon-based protective layers to suppress unwanted side reactions.Using this information should enable the development of stable,high-activity catalysts capable of long-term operation under practical conditions in Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries CATALYSIS Catalyst poisoning Catalytic activity Catalytic stability
在线阅读 下载PDF
A N-doped carbon with encapsulated Fe and Co particles derived from a metal organic framework for use as the anode in lithium-ion batteries
11
作者 CHEN Ren-tian ZHU Yu-xin +5 位作者 LUO Rui JIANG Xiao-nuo SI Hong-xiang QIU Xiang-yun WANG Qian WEI Tao 《新型炭材料(中英文)》 北大核心 2025年第2期363-376,共14页
Metal-organic frameworks(MOFs)are import-ant as possible energy storage materials.Nitrogen-doped iron-cobalt MOFs were synthesized by a one-pot solvo-thermal method using CoCl_(3)·6H_(2)O and FeCl_(3)·6H_(2)... Metal-organic frameworks(MOFs)are import-ant as possible energy storage materials.Nitrogen-doped iron-cobalt MOFs were synthesized by a one-pot solvo-thermal method using CoCl_(3)·6H_(2)O and FeCl_(3)·6H_(2)O dis-solved in N,N-dimethylformamide,and were converted into Fe-Co embedded in N-doped porous carbon polyhedra by pyrolysis in a nitrogen atmosphere.During pyrolysis,the or-ganic ligands transformed into N-doped porous carbon which improved their structural stability and also their electrical contact with other materials.The Fe and Co are tightly bound together because of their encapsulation by the carbon nitride and are well dispersed in the carbon matrix,and improve the material’s conductivity and stability and provide additional capacity.When used as the anode for lithium-ion batteries,the material gives an initial capacity of up to 2230.7 mAh g^(-1)and a reversible capa-city of 1146.3 mAh g^(-1)is retained after 500 cycles at a current density of 0.5 A g^(-1),making it an excellent candidate for this purpose. 展开更多
关键词 Metal-organic frameworks FeCo alloy Lithium-ion battery Anode materials
在线阅读 下载PDF
Sr^(2+)and choline chloride cointercalation in V_(2)O_(5) for aqueous zinc-ion batteries
12
作者 Shiyuan Chen Yongchun Zhu 《中国科学技术大学学报》 北大核心 2025年第3期20-26,19,I0001,共9页
V_(2)O_(5)·nH_(2)O has been widely studied for aqueous zinc-ion batteries.The intercalation of inorganic ions has been used as a feasible method to improve the capacity of vanadium pentoxide.To further improve th... V_(2)O_(5)·nH_(2)O has been widely studied for aqueous zinc-ion batteries.The intercalation of inorganic ions has been used as a feasible method to improve the capacity of vanadium pentoxide.To further improve the stability,organic small molecule choline chloride intercalation is used to expand the spacing of the vanadium pentoxide layers and increase the cycling stability.Therefore,we consider the introduction of Sr^(2+)to cointercalate with choline chloride.Here,we synthes-ized vanadium pentoxide cointercalated with Sr^(2+)and choline ions(Ch^(+))via a simple hydrothermal method.The electro-chemical performance shows an enhanced cathode capacitance contribution of Sr&Ch-V_(2)O_(5),with a discharge capacity of 526 mAh·g^(-1)at 0.1 A·g^(-1)and a retention rate of 78.9%after 2000 cycles at 5 A·g^(-1).This work offers a novel strategy for the design of organic‒inorganic hybrid materials for use as cathodes in aqueous zinc-ion batteries. 展开更多
关键词 aqueous Zn-ion batteries vanadium oxides ion intercalation
在线阅读 下载PDF
Three-Dimensional Melamine Carbon Sponge/NaI as Cathode Materials for Sodium-ion Batteries
13
作者 Qian-Ying Huang Yue Liu +5 位作者 Zi-Xin Lin Shu-Yi Zheng Ting-Ting Mei Yu-Ting Tang Ying-He Zhang Jun Liu 《电化学(中英文)》 北大核心 2025年第5期62-69,共8页
The sodium-iodine(Na-I)battery exhibits significant potential as an alternative energy storage device to the lithium-ion battery.However,its development is hindered by inadequate electrical and thermal stability,as we... The sodium-iodine(Na-I)battery exhibits significant potential as an alternative energy storage device to the lithium-ion battery.However,its development is hindered by inadequate electrical and thermal stability,as well as the dissolution and shuttling of polyiodide.In this study,we report a preparation method for melamine carbon sponge(MC)via carbonizing a commercially available kitchen sponge.It was revealed that the as-prepared MC,composed of unique self-growing carbon nanotubes,could provide both physical and chemical adsorption capabilities for intermediate polyiodides to improve the electrochemical performance of NaI.Consequently,the NaI/MC electrode effectively minimized polyiodide dissolution and reduced the electrochemical impedance.The NaI/MC cathode demonstrated a high average discharge capacity of 92.75 mAh·g^(–1)over 200 cycles while maintaining a coulombic efficiency of 94%.The research findings from our study have promising applications in Na-I batteries. 展开更多
关键词 Sodium-iodine battery Sodium iodide Melamine carbon sponge
在线阅读 下载PDF
Conventional carbon anodes for potassium-ion batteries:Progress,challenges and prospects
14
作者 CAO Bin CUI Zheng +2 位作者 LIU Huan ZHANG Shuang-yin XU Bin 《新型炭材料(中英文)》 北大核心 2025年第4期717-737,共21页
As an emerging electrochemical energy storage technology,potassium-ion batteries(PIBs),which are considered a“beyond Li-ion”battery system,have attracted tremendous attention due to their potential for providing a h... As an emerging electrochemical energy storage technology,potassium-ion batteries(PIBs),which are considered a“beyond Li-ion”battery system,have attracted tremendous attention due to their potential for providing a high energy density,and having abundant resource,and a low cost.However,their commercialization is hindered by the lack of practical anode materials.Among various reported anodes,conventional carbon materials,including graphite,soft carbon,and hard carbon,have emerged as promising candidates because of their abundance,low cost,high conductivity,and tunable structures.However,these materials have problems such as a low initial Coulombic efficiency,significant volume expansion,and unsatisfactory cyclability and rate performance.Various strategies to solve these have been explored,including optimizing the interlayer spacing,structural design,surface coating,constructing a multifunctional framework,and forming composites.This review provides a comprehensive overview of the recent progress in conventional carbon anodes,highlighting structural design strategies,mechanisms for improving the electrochemical performance,and underscores the critical role of these materials in promoting the practical application of PIBs. 展开更多
关键词 Potassium-ion batteries Carbon anode GRAPHITE Soft carbon Hard carbon
在线阅读 下载PDF
SnO_(2)Particles Embedded into Carbon Coated Mesoporous SiO_(x)Rod as High Volumetric Capacity Anode for Lithium-Ion Batteries
15
作者 Jia-Lin Guo Ni-Ni Li Peng Zheng 《电化学(中英文)》 北大核心 2025年第2期28-34,共7页
Due to the high capacity and moderate volume expansion of silicon protoxide SiO_(x)(160%)compared with that of Si(300%),reducing silicon dioxide SiO_(2)into SiO_(x)while maintaining its special nano-morphology makes i... Due to the high capacity and moderate volume expansion of silicon protoxide SiO_(x)(160%)compared with that of Si(300%),reducing silicon dioxide SiO_(2)into SiO_(x)while maintaining its special nano-morphology makes it attractive as an anode of Li-ion batteries.Herein,through a one-pot facile high-temperature annealing route,using SBA15 as the silicon source,and embedding tin dioxide SnO_(2)particles into carbon coated SiO_(x),the mesoporous SiO_(x)-SnO_(2)@C rod composite was prepared and tested as the anode material.The results revealed that the SnO_(2)particles were distributed uniformly in the wall,which could further improve their volume energy densities.The coated carbon plays a role in maintaining structural integrality during lithiation,and the rich mesopores structure can release the expanded volume and enhance Li-ion transfer.At 0.1 A·g^(-1),the gravimetric and volumetric capacities of the composite were as high as 1271 mAh·g^(-1)and 1573 mAh·cm^(-3),respectively.After 200 cycles,the 95%capacity could be retained compared with that upon the 2nd cycle at 0.5 A·g^(-1).And the rod morphology was well kept,except that the diameter of the rod was 3 times larger than its original size after the cell was discharged into 0.01 V. 展开更多
关键词 Carbon coating Mesoporous SiO_(x) ANODE Li-ion battery
在线阅读 下载PDF
An optimal design of the liquid-cooling plate channel in a power battery based on response surface methodology
16
作者 Jinbo Zheng Jibin Jiang +2 位作者 Xiwei Yu Bingjun Yan Guofu Lian 《中国科学技术大学学报》 北大核心 2025年第2期52-65,51,I0002,共16页
The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the rel... The work takes a new liquid-cooling plate in a power battery with pin fins inside the channel as the object.A mathematical model is established via the central composite design of the response surface to study the relationships among the length,width,height,and spacing of pin fins;the maximum temperature and temperature difference of the battery module;and the pressure drop of the liquid-cooling plate.Model accuracy is verified via variance analysis.The new liquid-cooling plate enables the power battery to work within an optimal temperature range.Appropriately increasing the length,width,and height and reducing the spacing of pin fins could reduce the temperature of the power battery module and improve the temperature uniformity.However,the pressure drop of the liquid-cooling plate increases.The structural parameters of the pin fins are optimized to minimize the maximum temperature and the temperature difference of the battery module as well as the pressure drop of the liquid-cooling plate.The errors between the values predicted and actual by the simulation test are 0.58%,4%,and 0.48%,respectively,which further verifies the model accuracy.The results reveal the influence of the structural parameters of the pin fins inside the liquid-cooling plate on its heat dissipation performance and pressure drop characteristics.A theoretical basis is provided for the design of liquid-cooling plates in power batteries and the optimization of structural parameters. 展开更多
关键词 response surface methodology power battery cooling channel optimal design
在线阅读 下载PDF
Advances of carbon nanotubes in lithium-ion batteries for the era of carbon neutrality
17
作者 HE Zi-ying YU Xing-wei +3 位作者 LV Qing-long WANG Xin-ping ZHANG Chen-xi WEI Fei 《新型炭材料(中英文)》 北大核心 2025年第4期766-781,共16页
Energy storage is a key factor in the drive for carbon neutrality and carbon nanotubes(CNTs)may have an important role in this.Their intrinsic sp2 covalent structure gives them excellent electrical conductivity,mechan... Energy storage is a key factor in the drive for carbon neutrality and carbon nanotubes(CNTs)may have an important role in this.Their intrinsic sp2 covalent structure gives them excellent electrical conductivity,mechanical strength,and chemical stability,making them suitable for many uses in energy storage,such as lithium-ion batteries(LIBs).Currently,their use in LIBs mainly focuses on conductive networks,current collectors,and dry electrodes.The review outlines advances in the use of CNTs in the cathodes and anodes of LIBs,especially in the electrode fabrication and mechanical sensors,as well as providing insights into their future development. 展开更多
关键词 Carbon nanotubes Conductive additives Lithium-ion batteries Carbon neutrality Energy storage
在线阅读 下载PDF
Carbon materials for smart batteries
18
作者 ZHOU Jun-yi DU Hong-hui +2 位作者 WANG Xue-tao CAO Xin-ru ZHI Lin-jie 《新型炭材料(中英文)》 北大核心 2025年第4期822-836,共15页
Smart batteries play a key role in upgrading energy storage systems.However,they require a well-balanced integration of material structure,functional properties,and electrochemical performance,and their development is... Smart batteries play a key role in upgrading energy storage systems.However,they require a well-balanced integration of material structure,functional properties,and electrochemical performance,and their development is limited by conventional material systems in terms of energy density,response time,and functional integration.Carbon materials have emerged as a key solution for overcoming these problems due to their structural adjustability and multifunctional compatibility.Strategies for improving their electrochemical performance by changing the pore structure and interlayer spacing,as well as chemical functionalization,and composite design are analyzed,and their impact on improving the specific capacity and cycling stability of batteries is demonstrated.The unique advantages of carbon materials in realizing smart functions such as power supply,real-time monitoring and energy management in smart batteries are also discussed.Based on current progress in related fields,the prospects for the use of carbon materials in smart batteries are evaluated. 展开更多
关键词 Carbon materials Smart battery Structural regulation Electrochemical performance Multifunctional integration
在线阅读 下载PDF
N-doped activated carbons from leather waste produced by microwave activation for use as the cathode of Li-S batteries
19
作者 Carolina Pano-Azucena Roberto Rosas-Rangel +5 位作者 Miguel Olvera-Sosa David Salvador González-González Rene Rangel-Mendez Luis Felipe Chazaro-Ruiz Miguel Avalos-Borja Javier Antonio Arcibar-Orozco 《新型炭材料(中英文)》 北大核心 2025年第2期392-408,共17页
The use of carbon from waste biomass has the potential to eliminate the drawbacks of Li-S batteries and improve their overall performance.Chrome-tanned-leather-shavings(CTLS)are a readily available waste product that ... The use of carbon from waste biomass has the potential to eliminate the drawbacks of Li-S batteries and improve their overall performance.Chrome-tanned-leather-shavings(CTLS)are a readily available waste product that can be transformed into porous carbon.We prepared an ac-tivated carbon by microwave pyrolysis combined with KOH activator using the CTLS as starting materials.The carbon had a specific surface area of 556 m^(2)g^(-1) and a honeycomb-like structure.Two kinds of N-doped activated carbons were then synthesized by thermal decomposition of the activated carbon,either combined with urea,or impregnated with eth-anolamine.Both N-doped activated carbons have an in-creased number of nitrogen and amine surface groups.However,only the urea treatment was effective in improv-ing the initial capacity of the cell(1363 mAh g^(-1)),which is probably linked to the sorption of long-chain polysulfides.This investigation confirms that it is possible to use the thermal de-composition of urea to obtain carbon materials from CTLS for use as the sulfur-host cathode in Li-S batteries and improve their performance.A radial basis function neural network was fitted to provide statistical support for the experimental results,which confirmed the importance of the nitrogen content of the carbons in determining the discharge capacity of the cells. 展开更多
关键词 Leather wastes Microwave activation Lithium-sulfur battery Urea decomposition Carbon material
在线阅读 下载PDF
Advances in the use of carbon materials for lithium-air batteries
20
作者 LEI Yu ZHONG Yu +3 位作者 LI Yi-shuo LI Tao ZHOU Zhuo-hui QIN Lei 《新型炭材料(中英文)》 北大核心 2025年第4期909-930,共22页
Lithium-air batteries(LABs)are regarded as a next-generation energy storage option due to their relatively high energy density.The cyclic stability and lifespan of LABs are mainly influenced by the formation and decom... Lithium-air batteries(LABs)are regarded as a next-generation energy storage option due to their relatively high energy density.The cyclic stability and lifespan of LABs are mainly influenced by the formation and decomposition of lithium-based oxides at the air cathode,which not only lead to a low cathode catalytic efficiency but also restrict the electrochemical reversibility and cause side reaction problems.Carbon materials are considered key to solving these problems due to their conductivity,functional flexibility,and adjustable pore structure.This paper considers the research progress on carbon materials as air cathode catalytic materials for LABs,focusing on their structural characteristics,electrochemical behavior,and reaction mechanisms.Besides being used as air cathodes,carbon materials also show potential for being used as protective layers for metal anodes or as anode materials for LABs. 展开更多
关键词 Lithium-air battery Carbon materials Air cathode Modified carbon electrode Oxygen crossover
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部