For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear l...For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear loads connected to the electric networks.Naturally,a centralized control coordination strategy was proposed for the purpose of high facility utilization,good harmonic compensation ability and unwanted overcompensation condition.Based on a vector decoupling control scheme and generalized instantaneous reactive power theory,the solution was to allocate the harmonic eliminating task for every inverter according to the instantaneous power margin of each.The grid current always keeps sinusoidal in spite of non-linear load change and output active power change for any inverter.The simulation results validate the efficacy of the proposed coordination strategy.展开更多
多逆变器并联系统内各逆变器的电流和电压在公共连接点(Point of common coupling,PCC)存在耦合,谐波和扰动会通过电流采样信号对连接到PCC的逆变器的控制产生影响,引起逆变器输出电流波形畸变,进一步增加PCC点的谐波注入,给系统的稳定...多逆变器并联系统内各逆变器的电流和电压在公共连接点(Point of common coupling,PCC)存在耦合,谐波和扰动会通过电流采样信号对连接到PCC的逆变器的控制产生影响,引起逆变器输出电流波形畸变,进一步增加PCC点的谐波注入,给系统的稳定运行带来隐患。针对多逆变器并联系统在PCC存在谐波耦合的问题,提出一种降阶自抗扰控制器(Active disturbance rejection control,ADRC)解耦控制策略,通过等效变换降低观测器所需阶次,消除反馈环节中逆变器电流的耦合分量,实现各逆变器的独立控制,有效地减少逆变器对PCC的谐波电流注入,从而改善电流波形。从环路增益角度分析,所提方法能有效消除耦合电流在控制环路的影响,并通过硬件在环试验验证所提方法能显著减少逆变器输出的高次谐波。展开更多
Modeling method for the current control loop of a grid-connected PWM inverter with the LCL output filter was discussed.Firstly,the current control loop with the LCL inverter-side current as feedback was established.Th...Modeling method for the current control loop of a grid-connected PWM inverter with the LCL output filter was discussed.Firstly,the current control loop with the LCL inverter-side current as feedback was established.Then,parameters of PI controller were calculated on the basis of an equivalent controlled object.Finally,Norton equivalent circuit for the current control loop of grid-connected system was derived by integrating one control equation,which connected the PWM inverter output voltage and the LCL inverter-side current,with two circuit equations,separately using the LCL inverter-side current and the injected current as loop currents.With the induced Norton equivalent circuit,system-level resonant and unstable issues on real grid-connected system applied in weak distributed power systems can be easily analyzed.The validity of substituting Norton equivalent circuit for grid-connected system is verified by simulation and experiment.展开更多
基金Project(51107111)supported by the National Natural Science Foundation of China
文摘For multiple grid-connected inverters with active filter function,it makes sense to regulate every unit to output maximum active power from photovoltaic arrays,as well as eliminate the harmonic due to the non-linear loads connected to the electric networks.Naturally,a centralized control coordination strategy was proposed for the purpose of high facility utilization,good harmonic compensation ability and unwanted overcompensation condition.Based on a vector decoupling control scheme and generalized instantaneous reactive power theory,the solution was to allocate the harmonic eliminating task for every inverter according to the instantaneous power margin of each.The grid current always keeps sinusoidal in spite of non-linear load change and output active power change for any inverter.The simulation results validate the efficacy of the proposed coordination strategy.
文摘多逆变器并联系统内各逆变器的电流和电压在公共连接点(Point of common coupling,PCC)存在耦合,谐波和扰动会通过电流采样信号对连接到PCC的逆变器的控制产生影响,引起逆变器输出电流波形畸变,进一步增加PCC点的谐波注入,给系统的稳定运行带来隐患。针对多逆变器并联系统在PCC存在谐波耦合的问题,提出一种降阶自抗扰控制器(Active disturbance rejection control,ADRC)解耦控制策略,通过等效变换降低观测器所需阶次,消除反馈环节中逆变器电流的耦合分量,实现各逆变器的独立控制,有效地减少逆变器对PCC的谐波电流注入,从而改善电流波形。从环路增益角度分析,所提方法能有效消除耦合电流在控制环路的影响,并通过硬件在环试验验证所提方法能显著减少逆变器输出的高次谐波。
基金Project(51307009)supported by the National Natural Science Foundation of ChinaProject(12JJ4045)supported by Hunan Provincial Natural Science Foundation,China+2 种基金Project(2011KFJJ003)supported by the Key Laboratory for Power Technology of Renewable Energy Sources of Hunan Province,ChinaProject(2011kfj14)supported by the Fund of Key Laboratory of Hunan Province about Power System Operation and Control,ChinaProject(454.13S-20)supported by the Enterprises’Postdoctoral Funds of Pudong Area of Shanghai,China
文摘Modeling method for the current control loop of a grid-connected PWM inverter with the LCL output filter was discussed.Firstly,the current control loop with the LCL inverter-side current as feedback was established.Then,parameters of PI controller were calculated on the basis of an equivalent controlled object.Finally,Norton equivalent circuit for the current control loop of grid-connected system was derived by integrating one control equation,which connected the PWM inverter output voltage and the LCL inverter-side current,with two circuit equations,separately using the LCL inverter-side current and the injected current as loop currents.With the induced Norton equivalent circuit,system-level resonant and unstable issues on real grid-connected system applied in weak distributed power systems can be easily analyzed.The validity of substituting Norton equivalent circuit for grid-connected system is verified by simulation and experiment.