Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass rat...Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass ratio,has not been systematically carried out.In this paper,the heat transfer and flow characteristics of related high temperature fuels are studied by using typical engine parallel channel structure.Through numeri⁃cal simulation and systematic experimental verification,the flow and heat transfer characteristics of parallel chan⁃nels under typical working conditions are obtained,and the effectiveness of high-precision calculation method is preliminarily established.It is known that the stable time required for hot start of regenerative cooling engine is about 50 s,and the flow resistance of parallel channel structure first increases and then decreases with the in⁃crease of equivalence ratio(The following equivalence ratio is expressed byΦ),and there is a flow resistance peak in the range ofΦ=0.5~0.8.This is mainly caused by the coupling effect of high temperature physical proper⁃ties,flow rate and pressure of fuel in parallel channels.At the same time,the cooling and heat transfer character⁃istics of parallel channels under some conditions of high heat-mass ratio are obtained,and the main factors affect⁃ing the heat transfer of parallel channels such as improving surface roughness and strengthening heat transfer are mastered.In the experiment,whenΦis less than 0.9,the phenomenon of local heat transfer enhancement and deterioration can be obviously observed,and the temperature rise of local structures exceeds 200℃,which is the risk of structural damage.Therefore,the reliability of long-term parallel channel structure under the condition of high heat-mass ratio should be fully considered in structural design.展开更多
Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model ...Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research.展开更多
Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thi...Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thickness(δ_(np))of neutron-rich ^(48)Ca was studied in the 140A MeV ^(48)Ca+^(9)Be projectile fragmentation reaction based on the parallel momentum distribution(p∥)of the residual fragments.A Fermi-type density distribution was employed to initiate the neutron density distributions in the LQMD simulations.A combined Gaussian function with different width parameters for the left side(Γ_(L))and the right side(Γ_(R))in the distribution was used to describe the p∥of the residual fragments.Taking neutron-rich sulfur isotopes as examples,Γ_(L) shows a sensitive correlation withδ_(np) of ^(48)Ca,and is proposed as a probe for determining the neutron skin thickness of the projectile nucleus.展开更多
This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Syste...This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Systems(CCSDS)standard.However,the information frame lengths of the CCSDS turbo codes are not suitable for flexible sub-frame parallelism design.To mitigate this issue,we propose a padding method that inserts several bits before the information frame header.To obtain low-latency performance and high resource utilization,two-level intra-frame parallelisms and an efficient data structure are considered.The presented Max-Log-Map decoder can be adopted to decode the Long Term Evolution(LTE)turbo codes with only small modifications.The proposed CCSDS turbo decoder at 10 iterations on NVIDIA RTX3070 achieves about 150 Mbps and 50Mbps throughputs for the code rates 1/6 and 1/2,respectively.展开更多
The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-...The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-fidelity models has been challenging due to the prohibitive computational costs.This paper presents an efficient parallel algorithm tailored for HVNM based on the Message Passing Interface standard.The algorithm evenly distributes the response matrix sets among processors during the matrix formation process,thus enabling independent construction without communication.Once the formation tasks are completed,a collective operation merges and shares the matrix sets among the processors.For the solution process,the problem domain is decomposed into subdomains assigned to specific processors,and the red-black Gauss-Seidel iteration is employed within each subdomain to solve the response matrix equation.Point-to-point communication is conducted between adjacent subdomains to exchange data along the boundaries.The accuracy and efficiency of the parallel algorithm are verified using the KAIST and JRR-3 test cases.Numerical results obtained with multiple processors agree well with those obtained from Monte Carlo calculations.The parallelization of HVNM results in eigenvalue errors of 31 pcm/-90 pcm and fission rate RMS errors of 1.22%/0.66%,respectively,for the 3D KAIST problem and the 3D JRR-3 problem.In addition,the parallel algorithm significantly reduces computation time,with an efficiency of 68.51% using 36 processors in the KAIST problem and 77.14% using 144 processors in the JRR-3 problem.展开更多
The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direc...The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direction of the basic flows.By defining an energy functional,it is proven that plane parallel shear flows are unconditionally nonlinearly exponentially stable for tilted streamwise perturbation when the Reynolds number is below a certain critical value and the boundary conditions are either rigid or stress-free.In the case of stress-free boundaries,by taking advantage of the poloidal-toroidal decomposition of a solenoidal field to define energy functionals,it can be even shown that plane parallel shear flows are unconditionally nonlinearly exponentially stable for all Reynolds numbers,where the tilted perturbation can be either spanwise or streamwise.展开更多
Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanism...Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanisms are taken as examples.By analyzing the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,a new method for establishing the dynamic equation of the sensing mechanism is proposed.Firstly,based on the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,the expression of the branch rod length is obtained.The inherent constraint relationship between the branches is excavated and the branch coordination closed chain of the“12-6”configuration is constructed.The output coordination equation of the sensing mechanism is successfully derived.Secondly,the dynamic equations of“12-4”and“12-6”configurations are constructed by the Newton-Euler method,and the forward decoupling equations of the two configurations are solved by combining the dynamic equations and the output coordination equations.Finally,the virtual prototype experiment is carried out,and the maximum reference errors of the forward decoupling equations of the two configuration sensing mechanisms are 4.23%and 6.53%,respectively.The results show that the proposed method is effective and feasible,and meets the real-time requirements.展开更多
A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete...A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality.展开更多
Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol develo...Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol development and application testing of LEO-SCN are challenging to carry out in a natural environment.Simulation platforms are a more effective means of technology demonstration.Currently available simulators have a single function and limited simulation scale.There needs to be a simulator for full-featured simulation.In this paper,we apply the parallel discrete-event simulation technique to the simulation of LEO-SCN to support large-scale complex system simulation at the packet level.To solve the problem that single-process programs cannot cope with complex simulations containing numerous entities,we propose a parallel mechanism and algorithms LP-NM and LP-YAWNS for synchronization.In the experiment,we use ns-3 to verify the acceleration ratio and efficiency of the above algorithms.The results show that our proposed mechanism can provide parallel simulation engine support for the LEO-SCN.展开更多
This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state...This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.展开更多
Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capa...Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capacity.However,channel estimation has become very challenging due to the use of massive MIMO antenna array.Fortunately,the mmWave channel has strong sparsity in the spatial angle domain,and the compressed sensing technology can be used to convert the original channel matrix into the sparse matrix of discrete angle grid.Thus the high-dimensional channel matrix estimation is transformed into a sparse recovery problem with greatly reduced computational complexity.However,the path angle in the actual scene appears randomly and is unlikely to be completely located on the quantization angle grid,thus leading to the problem of power leakage.Moreover,multiple paths with the random distribution of angles will bring about serious interpath interference and further deteriorate the performance of channel estimation.To address these off-grid issues,we propose a parallel interference cancellation assisted multi-grid matching pursuit(PIC-MGMP)algorithm in this paper.The proposed algorithm consists of three stages,including coarse estimation,refined estimation,and inter-path cyclic iterative inter-ference cancellation.More specifically,the angular resolution can be improved by locally refining the grid to reduce power leakage,while the inter-path interference is eliminated by parallel interference cancellation(PIC),and the two together improve the estimation accuracy.Simulation results show that compared with the traditional orthogonal matching pursuit(OMP)algorithm,the normalized mean square error(NMSE)of the proposed algorithm decreases by over 14dB in the case of 2 paths.展开更多
锂离子电池健康状态(state of health,SOH)估计对确保能量存储系统的可靠性和安全性至关重要。然而,现有SOH估计方法在单一特征提取和固定充放电条件依赖方面存在局限性,难以适应多变的实际工作环境。为解决这一问题,本工作提出了一种...锂离子电池健康状态(state of health,SOH)估计对确保能量存储系统的可靠性和安全性至关重要。然而,现有SOH估计方法在单一特征提取和固定充放电条件依赖方面存在局限性,难以适应多变的实际工作环境。为解决这一问题,本工作提出了一种基于弛豫电压的并行多尺度特征融合卷积模型(multi-scale feature fusion convolution model,MSFFCM)结合极端梯度提升树(XGBoost)的SOH估计方法。MSFFCM通过多层堆叠卷积模块提取弛豫电压数据的深层特征,同时利用并行多尺度注意力机制增强了多尺度特征的捕捉能力,并将这些特征与统计特征进行融合,以提升模型的特征提取和融合能力。针对XGBoost模型,本工作应用贝叶斯优化算法进行参数调优,从而在多源融合特征基础上实现高精度SOH估计。实验验证基于两种商用18650型号电池的多温度和多充放电策略数据集,结果表明该方法的均方根误差(RMSE)和平均绝对误差(MAE)均小于0.5%,明显优于传统方法。本工作为锂电池健康管理提供了一种不依赖特定充放电条件的有效估计工具,有望在复杂的实际应用中发挥重要作用。展开更多
文摘Due to the complex high-temperature characteristics of hydrocarbon fuel,the research on the long-term working process of parallel channel structure under variable working conditions,especially under high heat-mass ratio,has not been systematically carried out.In this paper,the heat transfer and flow characteristics of related high temperature fuels are studied by using typical engine parallel channel structure.Through numeri⁃cal simulation and systematic experimental verification,the flow and heat transfer characteristics of parallel chan⁃nels under typical working conditions are obtained,and the effectiveness of high-precision calculation method is preliminarily established.It is known that the stable time required for hot start of regenerative cooling engine is about 50 s,and the flow resistance of parallel channel structure first increases and then decreases with the in⁃crease of equivalence ratio(The following equivalence ratio is expressed byΦ),and there is a flow resistance peak in the range ofΦ=0.5~0.8.This is mainly caused by the coupling effect of high temperature physical proper⁃ties,flow rate and pressure of fuel in parallel channels.At the same time,the cooling and heat transfer character⁃istics of parallel channels under some conditions of high heat-mass ratio are obtained,and the main factors affect⁃ing the heat transfer of parallel channels such as improving surface roughness and strengthening heat transfer are mastered.In the experiment,whenΦis less than 0.9,the phenomenon of local heat transfer enhancement and deterioration can be obviously observed,and the temperature rise of local structures exceeds 200℃,which is the risk of structural damage.Therefore,the reliability of long-term parallel channel structure under the condition of high heat-mass ratio should be fully considered in structural design.
基金support from the National Natural Science Foundation of China(Grant No.T2293771)the STI 2030-Major Projects(Grant No.2022ZD0211400)the Sichuan Province Outstanding Young Scientists Foundation(Grant No.2023NSFSC1919)。
文摘Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research.
基金the National Natural Science Foundation of China(Nos.12375123,11975091,and 12305130)the Natural Science Foundation of Henan Province(No.242300421048)+1 种基金China Postdoctoral Science Foundation(No.2023M731016)Henan Postdoctoral Foundation(No.HN2022164).
文摘Neutron-skin thickness is a key parameter for a neutron-rich nucleus;however,it is difficult to determine.In the framework of the Lanzhou Quantum Molecular Dynamics(LQMD)model,a possible probe for the neutron-skin thickness(δ_(np))of neutron-rich ^(48)Ca was studied in the 140A MeV ^(48)Ca+^(9)Be projectile fragmentation reaction based on the parallel momentum distribution(p∥)of the residual fragments.A Fermi-type density distribution was employed to initiate the neutron density distributions in the LQMD simulations.A combined Gaussian function with different width parameters for the left side(Γ_(L))and the right side(Γ_(R))in the distribution was used to describe the p∥of the residual fragments.Taking neutron-rich sulfur isotopes as examples,Γ_(L) shows a sensitive correlation withδ_(np) of ^(48)Ca,and is proposed as a probe for determining the neutron skin thickness of the projectile nucleus.
基金supported by the Fundamental Research Funds for the Central Universities(FRF-TP20-062A1)Guangdong Basic and Applied Basic Research Foundation(2021A1515110070)。
文摘This paper presents a software turbo decoder on graphics processing units(GPU).Unlike previous works,the proposed decoding architecture for turbo codes mainly focuses on the Consultative Committee for Space Data Systems(CCSDS)standard.However,the information frame lengths of the CCSDS turbo codes are not suitable for flexible sub-frame parallelism design.To mitigate this issue,we propose a padding method that inserts several bits before the information frame header.To obtain low-latency performance and high resource utilization,two-level intra-frame parallelisms and an efficient data structure are considered.The presented Max-Log-Map decoder can be adopted to decode the Long Term Evolution(LTE)turbo codes with only small modifications.The proposed CCSDS turbo decoder at 10 iterations on NVIDIA RTX3070 achieves about 150 Mbps and 50Mbps throughputs for the code rates 1/6 and 1/2,respectively.
基金supported by the National Key Research and Development Program of China(No.2020YFB1901900)the National Natural Science Foundation of China(Nos.U20B2011,12175138)the Shanghai Rising-Star Program。
文摘The heterogeneous variational nodal method(HVNM)has emerged as a potential approach for solving high-fidelity neutron transport problems.However,achieving accurate results with HVNM in large-scale problems using high-fidelity models has been challenging due to the prohibitive computational costs.This paper presents an efficient parallel algorithm tailored for HVNM based on the Message Passing Interface standard.The algorithm evenly distributes the response matrix sets among processors during the matrix formation process,thus enabling independent construction without communication.Once the formation tasks are completed,a collective operation merges and shares the matrix sets among the processors.For the solution process,the problem domain is decomposed into subdomains assigned to specific processors,and the red-black Gauss-Seidel iteration is employed within each subdomain to solve the response matrix equation.Point-to-point communication is conducted between adjacent subdomains to exchange data along the boundaries.The accuracy and efficiency of the parallel algorithm are verified using the KAIST and JRR-3 test cases.Numerical results obtained with multiple processors agree well with those obtained from Monte Carlo calculations.The parallelization of HVNM results in eigenvalue errors of 31 pcm/-90 pcm and fission rate RMS errors of 1.22%/0.66%,respectively,for the 3D KAIST problem and the 3D JRR-3 problem.In addition,the parallel algorithm significantly reduces computation time,with an efficiency of 68.51% using 36 processors in the KAIST problem and 77.14% using 144 processors in the JRR-3 problem.
基金supported by the National Natural Science Foundation of China(21627813)。
文摘The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direction of the basic flows.By defining an energy functional,it is proven that plane parallel shear flows are unconditionally nonlinearly exponentially stable for tilted streamwise perturbation when the Reynolds number is below a certain critical value and the boundary conditions are either rigid or stress-free.In the case of stress-free boundaries,by taking advantage of the poloidal-toroidal decomposition of a solenoidal field to define energy functionals,it can be even shown that plane parallel shear flows are unconditionally nonlinearly exponentially stable for all Reynolds numbers,where the tilted perturbation can be either spanwise or streamwise.
基金supported in part by the National Natural Science Foundation of China(No.51405237)。
文摘Aiming at the problem that it is difficult to generate the dynamic decoupling equation of the parallel six-dimensional acceleration sensing mechanism,two typical parallel six-dimensional acceleration sensing mechanisms are taken as examples.By analyzing the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,a new method for establishing the dynamic equation of the sensing mechanism is proposed.Firstly,based on the scale constraint relationship between the hinge points on the mass block and the hinge points on the base of the sensing mechanism,the expression of the branch rod length is obtained.The inherent constraint relationship between the branches is excavated and the branch coordination closed chain of the“12-6”configuration is constructed.The output coordination equation of the sensing mechanism is successfully derived.Secondly,the dynamic equations of“12-4”and“12-6”configurations are constructed by the Newton-Euler method,and the forward decoupling equations of the two configurations are solved by combining the dynamic equations and the output coordination equations.Finally,the virtual prototype experiment is carried out,and the maximum reference errors of the forward decoupling equations of the two configuration sensing mechanisms are 4.23%and 6.53%,respectively.The results show that the proposed method is effective and feasible,and meets the real-time requirements.
基金supported by the Key Area R&D Program of Guangdong Province (Grant No.2022B0701180001)the National Natural Science Foundation of China (Grant No.61801127)+1 种基金the Science Technology Planning Project of Guangdong Province,China (Grant Nos.2019B010140002 and 2020B111110002)the Guangdong-Hong Kong-Macao Joint Innovation Field Project (Grant No.2021A0505080006)。
文摘A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform.Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher–Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality.
基金supported by Jiangsu Provincial Key Research and Development Program (No.BE20210132)the Zhejiang Provincial Key Research and Development Program (No.2021C01040)the team of S-SET
文摘Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol development and application testing of LEO-SCN are challenging to carry out in a natural environment.Simulation platforms are a more effective means of technology demonstration.Currently available simulators have a single function and limited simulation scale.There needs to be a simulator for full-featured simulation.In this paper,we apply the parallel discrete-event simulation technique to the simulation of LEO-SCN to support large-scale complex system simulation at the packet level.To solve the problem that single-process programs cannot cope with complex simulations containing numerous entities,we propose a parallel mechanism and algorithms LP-NM and LP-YAWNS for synchronization.In the experiment,we use ns-3 to verify the acceleration ratio and efficiency of the above algorithms.The results show that our proposed mechanism can provide parallel simulation engine support for the LEO-SCN.
基金supported by the National Natural Science Foundation of China under grant 61941106。
文摘This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems.
基金supported in part by the Beijing Natural Science Foundation under Grant No.L202003the National Natural Science Foundation of China under Grant U22B2001 and 62271065the Project of China Railway Corporation under Grant N2022G048.
文摘Millimeter wave(mmWave)massive multiple-input multiple-output(MIMO)plays an important role in the fifth-generation(5G)mobile communications and beyond wireless communication systems owing to its potential of high capacity.However,channel estimation has become very challenging due to the use of massive MIMO antenna array.Fortunately,the mmWave channel has strong sparsity in the spatial angle domain,and the compressed sensing technology can be used to convert the original channel matrix into the sparse matrix of discrete angle grid.Thus the high-dimensional channel matrix estimation is transformed into a sparse recovery problem with greatly reduced computational complexity.However,the path angle in the actual scene appears randomly and is unlikely to be completely located on the quantization angle grid,thus leading to the problem of power leakage.Moreover,multiple paths with the random distribution of angles will bring about serious interpath interference and further deteriorate the performance of channel estimation.To address these off-grid issues,we propose a parallel interference cancellation assisted multi-grid matching pursuit(PIC-MGMP)algorithm in this paper.The proposed algorithm consists of three stages,including coarse estimation,refined estimation,and inter-path cyclic iterative inter-ference cancellation.More specifically,the angular resolution can be improved by locally refining the grid to reduce power leakage,while the inter-path interference is eliminated by parallel interference cancellation(PIC),and the two together improve the estimation accuracy.Simulation results show that compared with the traditional orthogonal matching pursuit(OMP)algorithm,the normalized mean square error(NMSE)of the proposed algorithm decreases by over 14dB in the case of 2 paths.