期刊文献+
共找到343篇文章
< 1 2 18 >
每页显示 20 50 100
基于PSO-BP神经网络高速公路建设期碳排放预测方法
1
作者 赵全胜 李斐 +4 位作者 郭风爱 于建游 徐士钊 胡运朋 褚晓萌 《河北科技大学学报》 北大核心 2025年第3期312-321,共10页
为了解决高速公路建设期碳排放预测不精准的问题,提出了粒子群优化(particle swarm optimization,PSO)算法优化BP(back propagation)神经网络预测碳排放的方法。采用层次分析法(analytic hierarchy process,AHP)从工程长度层、工程建设... 为了解决高速公路建设期碳排放预测不精准的问题,提出了粒子群优化(particle swarm optimization,PSO)算法优化BP(back propagation)神经网络预测碳排放的方法。采用层次分析法(analytic hierarchy process,AHP)从工程长度层、工程建设层、能源消耗层与材料消耗层4个维度凝练出路线长度、路基长度、路面长度、隧道长度、桥涵长度、互通区长度、挖方量、填方量、柴油消耗量、水泥消耗量、碎石消耗量和钢筋消耗量12个关键指标;获取36个高速公路项目数据作为模型训练的实证样本,结合误差指标进行对比分析。结果表明,所得PSO-BP模型R2为0.974,BP模型R2为0.890,前者更接近于1;与生命周期法结果相比较,PSO-BP比未优化的BP与真实值之间偏差更小。划分的4个维度层和选择的12个关键指标使得在高速公路设计规划阶段即可预测得到建设期的碳排放,为高速公路的低碳建设提供了参考。 展开更多
关键词 道路工程其他学科 碳排放预测 pso-BP神经网络 模型优化 因素分析
在线阅读 下载PDF
沙柳平茬刀具减磨优化——基于PSO-BP神经网络结合GA算法 被引量:2
2
作者 韩志武 刘志刚 +3 位作者 常涛涛 裴承慧 张鹏峰 张建强 《农机化研究》 北大核心 2025年第8期259-265,共7页
沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬... 沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬试验获取不同锯齿结构下的磨损退化量数据,基于磨损数据建立PSO(Particle Swarm Optimization)算法优化的BP(Back Propagation)神经网络模型,用于预测圆锯片的磨损量;然后,将训练好的PSO-BP神经网络模型与GA(Genetic Algorithm)算法相结合,以磨损量最小为优化目标,寻找圆锯片锯齿结构的最优参数。结果表明:所建立的模型成功实现了对圆锯片前角、后角、前刀面斜磨角等结构参数的多目标优化,优化得到的圆锯片参数使磨损量相对最小,提升了圆锯片的减磨性能。由此为进一步改善沙柳平茬圆锯片的切削及减磨损性能提供了新的设计思路,为提高沙柳平茬工作效率提供了技术支持,有利于生态环境保护和农业可持续发展。 展开更多
关键词 沙柳 平茬圆锯片 减磨优化 pso-BP神经网络 遗传算法
在线阅读 下载PDF
基于PSO-BP神经网络模型的浸胶竹束干燥过程含水率预测
3
作者 王晓曼 吕建雄 +5 位作者 李贤军 吴义强 李新功 郝晓峰 乔建政 徐康 《林业科学》 北大核心 2025年第5期187-198,共12页
【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测... 【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测数据,以干燥温度、干燥时间、铺装方式和初始含水率为输入变量,干燥过程含水率为输出变量,制作数据集。将数据集划分为训练集(308个测试数据,占总数据量的70%)、验证集(66个测试数据,占总数据量的15%)和测试集(66个测试数据,占总数据量的15%),采用粒子群优化算法(PSO)优化反向传播(BP)神经网络初始权重与阈值,构建PSO-BP神经网络预测模型,并进行验证分析。【结果】PSO-BP神经网络模型具有较强的预测能力,在模型测试集中,决定系数(R^(2))、均方误差(MSE)、平均绝对误差(MAE)和剩余预测残差(RPD)分别达0.98、1.27、3.73和7.96。相较BP神经网络,PSO-BP神经网络的R^(2)和RPD分别提高6.53%和110.2%,MSE和MAE分别降低54.0%和71.86%。模型验证表明,干燥温度和铺装方式是影响浸胶竹束干燥过程含水率变化的主要因素,二者对PSO-BP神经网络模型预测结果影响显著。干燥温度为60℃时,在4种不同铺装方式下PSO-BP神经网络模型展现出较好预测效果,其R^(2)均超过0.969且MSE均低于3;铺装层数为3时,在4种不同干燥温度下PSO-BP神经网络模型表现最佳,其R^(2)均超过0.99且MSE均低于2。干燥时间和浸胶竹束初始含水率对PSO-BP神经网络模型预测结果影响不显著。【结论】PSO-BP神经网络模型在浸胶竹束干燥过程含水率预测中表现出准确性,可有效解决传统BP神经网络预测误差大、收敛速度慢等问题,为浸胶竹束高质高效干燥提供技术支撑。 展开更多
关键词 浸胶竹束 干燥 含水率 粒子群优化算法 反向传播 神经网络
在线阅读 下载PDF
基于PSO-ChOA优化的轴流风机故障诊断模型
4
作者 吕亚楠 赵康 +1 位作者 马草原 郑璐 《机电工程》 北大核心 2025年第2期373-386,共14页
传统的风机故障诊断技术依赖大量的历史数据,在参数优化和算法选择上存在早熟收敛问题,且在风机故障诊断过程中需要精确采集信号,但实际应用中受限于传感器安装条件,影响了数据的准确性和诊断的有效性。针对这些问题,提出了一种融合改... 传统的风机故障诊断技术依赖大量的历史数据,在参数优化和算法选择上存在早熟收敛问题,且在风机故障诊断过程中需要精确采集信号,但实际应用中受限于传感器安装条件,影响了数据的准确性和诊断的有效性。针对这些问题,提出了一种融合改进粒子群优化算法(PSO)与黑猩猩优化算法(ChOA)混合优化策略(PSO-ChOA)的VMD-CNN-Transformer模型,应用于轴流风机故障诊断。首先,通过仿真和实验获取了七种风机典型电气故障信号和三种离心风机轴承故障信号,并进行了预处理以满足算法训练要求;然后,使用PSO对ChOA的狩猎搜索阶段进行了优化,减少了人为设定参数对模型训练的影响,通过构建23个标准测试函数,分析了PSO-ChOA算法在收敛速度和全局优化上的优势;最后,利用变分模态分解(VMD)提取了故障特征,并利用卷积神经网络-Transformer(CNN-Transformer)模型进行了分类,采用实例分析了该模型在处理非线性和高维数据时的强大能力。研究结果表明:相较于传统算法,PSO-ChOA算法在收敛速度上的优势显著,能够更快地跳出局部最优,避免早熟收敛,同时保持较高的搜索精度,最终找到更接近全局最优的解;采用PSO-ChOA优化的VMD-CNN-Transformer模型在风机故障诊断任务中达到了97.76%的准确率,较VMD-CNN-Transformer方法,准确率提升了6.64%;PSO-ChOA在参数优化领域的应用潜力,为工业设备故障诊断研究提供了新的视角。 展开更多
关键词 离心式风机 复杂非线性信号 粒子群优化 黑猩猩优化算法 卷积神经网络-Transformer模型 变分模态分解
在线阅读 下载PDF
基于探地雷达与PSO−BP神经网络的煤岩界面预测研究
5
作者 张和江 张义平 +2 位作者 侯晨锋 王缪斯 周利治 《工矿自动化》 北大核心 2025年第8期80-87,共8页
针对探地雷达在煤岩界面预测应用中精度不足的问题,利用粒子群优化(PSO)算法对BP神经网络进行优化,构建了基于探地雷达与PSO−BP神经网络的煤岩界面预测模型。采用探地雷达单侧反射法探测煤岩界面,总结不同情况下的雷达图像响应特征,从... 针对探地雷达在煤岩界面预测应用中精度不足的问题,利用粒子群优化(PSO)算法对BP神经网络进行优化,构建了基于探地雷达与PSO−BP神经网络的煤岩界面预测模型。采用探地雷达单侧反射法探测煤岩界面,总结不同情况下的雷达图像响应特征,从而确定煤岩界面特征参数:煤占比、响应位置振幅、煤响应位置振幅平均值、振幅衰减值、反射波所用双程走时、电磁波波速和煤介电常数;根据选择的特征参数开展介电常数测试和模拟煤岩界面识别实验,获取实测样本数据;采用PSO算法对BP神经网络权值与阈值进行优化,得到最优模型;将煤岩界面特征参数输入PSO−BP神经网络模型,实现煤岩界面预测。实验结果表明:与GA−BP和BP神经网络模型相比,PSO−BP模型的均方误差(MSE)分别下降了22.14%和45.54%,平均绝对百分比误差(MAPE)分别下降了22.22%和46.15%,平均绝对误差(MAE)分别下降了31.58%和55.68%,PSO−BP在预测精度、误差控制能力和数据拟合效果上均具有显著优势,预测煤岩界面位置更贴近实际位置,稳定性更好。 展开更多
关键词 煤岩界面识别 探地雷达 BP神经网络 粒子群优化算法 pso−BP神经网络 特征参数
在线阅读 下载PDF
基于改进PSO-BP神经网络的Ni-TiC复合镀层工艺参数优化方法
6
作者 李学威 王兆浩 《电镀与精饰》 北大核心 2025年第8期76-82,共7页
在Ni-TiC复合镀层的制备过程中,由于受到参数非线性波动以及多参数间复杂作用关系的影响,其镀层制备效果不佳。为达到理想的镀层效果,本次借助脉冲负荷电沉积法制备Ni-TiC复合镀层环境,开展基于改进粒子群优化-反向传播(Particle Swarm ... 在Ni-TiC复合镀层的制备过程中,由于受到参数非线性波动以及多参数间复杂作用关系的影响,其镀层制备效果不佳。为达到理想的镀层效果,本次借助脉冲负荷电沉积法制备Ni-TiC复合镀层环境,开展基于改进粒子群优化-反向传播(Particle Swarm Optimization Backpropagation,PSO-BP)神经网络的Ni-TiC复合镀层工艺参数优化方法研究。先对Ni-TiC复合镀层工艺进行分析,探讨TiC粒子浓度、电流密度以及pH值三种工艺参数的影响,然后以此为基础,设计正交试验,开展对Ni-TiC复合镀层工艺参数的初步优化,最后以得到的正交试验结果为输入,采用BP神经网络完成Ni-TiC复合镀层工艺参数优化模型的构建与训练设计,应用改进PSO算法完成BP神经网络模型参数寻优,实现Ni-TiC复合镀层工艺参数优化。实验结果表明:应用该方法,可以实现Ni-TiC复合镀层的制备工艺参数优化,采用优化后的工艺制备的复合镀层的耐腐蚀能力更强。 展开更多
关键词 改进pso算法 BP神经网络 Ni-TiC复合镀层 工艺参数优化 正交实验 脉冲负荷电沉积方法
在线阅读 下载PDF
基于PSO-Elman神经网络的井底风温预测模型 被引量:2
7
作者 程磊 李正健 +1 位作者 史浩镕 王鑫 《工矿自动化》 CSCD 北大核心 2024年第1期131-137,共7页
目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒... 目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒子群优化(PSO)算法对Elman神经网络的权值和阈值进行优化,建立了基于PSO-Elman神经网络的井底风温预测模型。分析得出入风相对湿度、入风温度、地面大气压力和井筒深度是井底风温的主要影响因素,因此将其作为模型的输入数据,模型的输出数据为井底风温。在相同样本数据集下的实验结果表明:Elman模型迭代90次后收敛,PSO-Elman模型迭代41次后收敛,说明PSO-Elman模型收敛速度更快;与BP神经网络模型、支持向量回归模型和Elman模型相比,PSO-Elman模型的预测误差较低,平均绝对误差、均方误差(MSE)、平均绝对百分比误差分别为0.376 0℃,0.278 3,1.95%,决定系数R^(2)为0.992 4,非常接近1,表明预测模型具有良好的预测效果。实例验证结果表明,PSO-Elman模型的相对误差范围为-4.69%~1.27%,绝对误差范围为-1.06~0.29℃,MSE为0.26,整体预测精度可满足井下实际需要。 展开更多
关键词 井下热害防治 井底风温预测 粒子群优化算法 ELMAN神经网络 pso-Elman
在线阅读 下载PDF
基于GA/PSO BP神经网络的石家庄VOCs环境浓度预测模型研究 被引量:6
8
作者 王欣 郭婧涵 +5 位作者 耿雅娴 王树桥 葛宇轩 袁京周 张丁超 韩梦非 《安全与环境学报》 CAS CSCD 北大核心 2024年第4期1560-1568,共9页
为了提升挥发性有机物(Volatile Organic Components,VOCs)的预测精度,在反向传播(Back Propagation,BP)网络结构的基础上使用优化算法分别为遗传算法(Genetic Algorithms,GA)优化BP神经网络(GA BP)和粒子群算法(Particle Swarm Optimiz... 为了提升挥发性有机物(Volatile Organic Components,VOCs)的预测精度,在反向传播(Back Propagation,BP)网络结构的基础上使用优化算法分别为遗传算法(Genetic Algorithms,GA)优化BP神经网络(GA BP)和粒子群算法(Particle Swarm Optimization,PSO)优化BP神经网络(PSO BP)对VOCs质量浓度进行预测。首先,对污染物及气象因子进行筛选。采用相关性分析法及逐步回归法进行分析筛选,并筛选出合适的输入变量。其次,建立BP神经网络结构。利用BP、GA BP、PSO BP神经网络,以石家庄市2022年夏季污染数据为样本对VOCs质量浓度进行预测。结果显示,经相关性分析及逐步回归法筛选,将PM_(2.5)质量浓度、O_(3)质量浓度、NO_(2)质量浓度、温度、相对湿度作为输入变量。经预测结果对比,PSO BP神经网络模型的预测精度较高,烷烃、烯烃、芳香烃和含氧烃实测值与预测值之间的拟合程度(R^(2))分别为0.80、0.55、0.78、0.67。研究结果可为日后VOCs污染预报预警提供理论参考。 展开更多
关键词 环境工程学 挥发性有机物(VOCs) 神经网络 智能优化算法 遗传算法 粒子群算法
在线阅读 下载PDF
基于PSO-BP模型的差速器装配密封质量预测 被引量:2
9
作者 徐静 杨德岭 《森林工程》 北大核心 2024年第5期134-144,共11页
为了对林业运材车差速器总成装配密封质量进行事前预测,提高其产品质量及装配合格率,提出一种灰色关联分析算法结合粒子群(PSO)优化BP神经网络的预测模型。将由灰色关联分析算法筛选出影响差速器总成密封质量的关键装配工艺参数作为输... 为了对林业运材车差速器总成装配密封质量进行事前预测,提高其产品质量及装配合格率,提出一种灰色关联分析算法结合粒子群(PSO)优化BP神经网络的预测模型。将由灰色关联分析算法筛选出影响差速器总成密封质量的关键装配工艺参数作为输入变量,差速器总成泄漏值作为输出变量,创建基于粒子群(PSO)算法优化BP神经网络(PSO-BP)的预测模型,结果表明,由灰色关联分析简化后的PSO-BP预测方法得到的平均相对误差最小为1.18%。在此基础上,应用PyQt5 GUI库开发差速器总成泄漏值预测系统。研究结果可以为差速器总成密封质量预测提供理论依据。 展开更多
关键词 运材车辆 差速器 密封质量 灰色关联分析算法 粒子群优化算法 反向传播神经网络
在线阅读 下载PDF
基于小波包分解和神经网络集成群的滚动轴承故障诊断 被引量:1
10
作者 柴立平 孟壮壮 +1 位作者 石海峡 李强 《合肥工业大学学报(自然科学版)》 北大核心 2025年第4期447-454,共8页
文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back p... 文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络分别对轴承进行故障诊断,比较分析小波包能量和小波包样本熵作为特征向量的适配程度;再以多个神经网络作为神经网络集成群的基础子网络,通过统计耦合、输出耦合和统计输出耦合形成神经网络集成群的二级网络;最后通过最终统计耦合输出神经网络集成群的分类结果。研究结果表明,该方法可获得理想的滚动轴承故障诊断准确率,在负载变化时具有良好的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 小波包变换 粒子群优化反向传播神经网络 神经网络集成群
在线阅读 下载PDF
欠约束临时支护机器人几何静力耦合模型及运动控制研究
11
作者 刘鹏 朱延 +6 位作者 马宏伟 曹现刚 张旭辉 段学超 周昊晨 乔心州 夏晶 《煤炭科学技术》 北大核心 2025年第8期346-361,共16页
护盾式智能掘进机器人系统有效的解决了煤矿开采中“采掘失衡、采快掘慢”难题。临时支护机器人作为该系统的重要组成部分,尽管在提升作业效率上发挥了重要作用,但由于结构限制,仅能实现竖直方向的升降运动,难以有效应对复杂巷道的临时... 护盾式智能掘进机器人系统有效的解决了煤矿开采中“采掘失衡、采快掘慢”难题。临时支护机器人作为该系统的重要组成部分,尽管在提升作业效率上发挥了重要作用,但由于结构限制,仅能实现竖直方向的升降运动,难以有效应对复杂巷道的临时支护作业。为解决临时支护机器人运动受限难题,设计了一种欠约束临时支护机器人,并提出了一种基于RBF神经网络分块逼近的终端滑模控制方法,以实现欠约束临时支护机器人的高精度运动控制。首先,利用修正的G-K公式对该机器人的自由度进行了分析,针对欠约束临时支护机器人正运动学难以求解问题,建立了几何静力耦合模型,提出了一种改进的蜣螂优化算法,对正/逆几何静力问题进行求解,并对几何静力问题进行了仿真;其次,设计了一种基于RBF神经网络分块逼近的终端滑模控制器。针对末端支护平台参数矩阵的不确定,使用多组RBF神经网络对其逼近,根据自适应律在线调整权值,实现了动力学模型的重构,并设计鲁棒项消除模型重构误差和外部扰动。为缓解控制器存在的抖振问题,设计了模糊系统自适应逼近切换增益来代替鲁棒项,并利用Lyapunov准则证明了控制系统的稳定性。最后,以平面圆轨迹为例进行仿真。结果表明:改进的蜣螂优化算法对正/逆运动学单点验证精度均小于10-20,连续运动学求解结果良好。使用RBF神经网络分块逼近的终端滑模控制方法对预定轨迹的位置跟踪误差为0~0.011m,姿态跟踪误差为0~0.0031°,与RBF神经网络整体逼近和PD控制相比最大跟踪误差分别减少了99.0%、95.5%,均方根误差分别减少了98.3%、96.5%。证明了基于RBF神经网络分块逼近的终端滑模控制方法能进一步提高欠约束临时支护机器人的运动控制精度,在受到外界干扰的情况下具有更强的鲁棒性。 展开更多
关键词 欠约束并联机器人 临时支护 运动控制 优化算法 神经网络 模糊系统
在线阅读 下载PDF
聚类和群智能优化算法的自动剪枝方法
12
作者 刘洲峰 吴文涛 +2 位作者 李环宇 邵昕楠 李春雷 《计算机工程与应用》 北大核心 2025年第11期204-215,共12页
近年来,网络剪枝技术作为一种极为有效的卷积神经网络压缩方案,得到了迅猛的发展,其中通道剪枝得益于其硬件友好性,有着尤为明显的优势。然而,当前主流方法集中于通过通道重要性评估或人工干预来实现剪枝,低效且容易导致次优结果;同时... 近年来,网络剪枝技术作为一种极为有效的卷积神经网络压缩方案,得到了迅猛的发展,其中通道剪枝得益于其硬件友好性,有着尤为明显的优势。然而,当前主流方法集中于通过通道重要性评估或人工干预来实现剪枝,低效且容易导致次优结果;同时一些基于搜索算法的自动化剪枝方法则难以控制搜索空间与搜索效率之间的平衡。为了解决这些问题,提出了一种基于聚类与群智能优化算法的自动通道剪枝方法。具体来说,根据特征图的相似度利用K-Mediod算法进行逐层的通道聚类,并通过灵敏度分析找到当前最优剪枝率,从而形成初步的压缩模型,引入粒子群算法(PSO)对其进行迭代搜索并找到最优剪枝网络结构。对剪枝网络进行微调,以降低精度损失。在CIFAR-10、ILSVRC-2012上对几种最为常用的CNN模型进行了评估,与近年来的主流方法相比实验结果有所提升,证明了剪枝后网络的有效性,在ILSVRC-2012中,在ResNet-50达到45.5%剪枝率的前提下,模型准确度只降低了0.23个百分点。 展开更多
关键词 卷积神经网络 模型压缩 网络剪枝 网络结构搜索 粒子群算法
在线阅读 下载PDF
基于全局灵敏度分析的综合能源设备响应价值量化方法 被引量:1
13
作者 黄逸翔 窦迅 +3 位作者 李林溪 杨函煜 于建成 霍现旭 《上海交通大学学报》 北大核心 2025年第5期569-579,共11页
综合需求响应作为提升能源利用效率,促进可再生清洁能源消纳的有效途径之一,其本质是通过综合能源设备的多能耦合能力引导用户参与源荷双向互动.为提升综合能源系统的运行控制水平,需要准确评估综合能源设备的响应价值.因此,提出一种基... 综合需求响应作为提升能源利用效率,促进可再生清洁能源消纳的有效途径之一,其本质是通过综合能源设备的多能耦合能力引导用户参与源荷双向互动.为提升综合能源系统的运行控制水平,需要准确评估综合能源设备的响应价值.因此,提出一种基于Sobol全局灵敏度分析的综合能源设备响应价值量化方法.首先,以总运行成本最小为目标函数,考虑多类型需求响应,建立综合能源系统泛化优化模型,并构建基于粒子群-反向传播神经网络的综合能源系统优化代理模型.然后,采用Sobol全局灵敏度方法量化设备效率参数对成本、用户满意度、综合能源利用率以及电能替代率的全局灵敏度指标,用于评估综合能源设备的响应价值并且辨识影响系统状态的关键设备.最后,通过对江苏省某商业园区进行仿真,获得各综合能源设备效率的全局灵敏度系数,分析不同设备效率对系统状态的影响,准确量化综合能源设备的响应价值,验证了所提方法的有效性. 展开更多
关键词 全局灵敏度分析 综合需求响应价值 综合能源设备 综合能源系统 粒子群-反向传播神经网络
在线阅读 下载PDF
边坡稳定性的CPSO-BP模型研究 被引量:31
14
作者 胡军 董建华 +1 位作者 王凯凯 黄贵臣 《岩土力学》 EI CAS CSCD 北大核心 2016年第S1期577-582 590,共7页
为了分析边坡的稳定性,利用协调粒子群算法和BP网络建立了边坡稳定性CPSO-BP预测模型。BP网络能够很好地描述边坡稳定性与其影响因素之间复杂的非线性关系,将内摩擦角、边坡角、岩石重度、边坡高度、黏聚力、孔隙压力比6个主要影响因素... 为了分析边坡的稳定性,利用协调粒子群算法和BP网络建立了边坡稳定性CPSO-BP预测模型。BP网络能够很好地描述边坡稳定性与其影响因素之间复杂的非线性关系,将内摩擦角、边坡角、岩石重度、边坡高度、黏聚力、孔隙压力比6个主要影响因素作为网络的输入,将边坡稳定性系数作为网络的输出。为避免BP网络陷入局部最优,利用协调粒子群算法的全局优化能力确定BP网络的连接权值和阀值,使BP网络的优势得到分发挥,达到提高模型预测精度目的。实例表明CPSO-BP模型有更好地预测精度以及将其应用于边坡稳定性预测是可行的。 展开更多
关键词 粒子群算法 协调 BP神经网络 边坡 稳定性评价
在线阅读 下载PDF
基于SHPSO-GA-BP的成品汽油调和中加氢汽油组分辛烷值的预测 被引量:12
15
作者 李炜 王晓明 +2 位作者 蒋栋年 李亚洁 梁成龙 《化工学报》 EI CAS CSCD 北大核心 2020年第7期3191-3200,共10页
针对成品汽油调和配方建模中加氢汽油组分辛烷值难以实时获取,考虑遗传算法(genetic algorithm,GA)、粒子群算法(particle swarm optimization,PSO)优化反向传播(back propagation,BP)网络存在的问题,提出了一种串行混合粒子群遗传算法(... 针对成品汽油调和配方建模中加氢汽油组分辛烷值难以实时获取,考虑遗传算法(genetic algorithm,GA)、粒子群算法(particle swarm optimization,PSO)优化反向传播(back propagation,BP)网络存在的问题,提出了一种串行混合粒子群遗传算法(serial hybrid PSO-GA,SHPSO-GA)优化BP网络,并用于辛烷值的预测建模。该方法首先将PSO算法的输出依据适应度值分为优劣2个种群,弃劣留优;然后对留优种群再进行GA的交叉变异操作,进一步优化种群,经过每一代PSO和GA的交替优化,并将最优种群用于BP网络参数优化;最后基于该方法和工业历史数据,建立了加氢汽油组分辛烷值的预测模型,仿真结果表明,较传统BP,以及改进的GA-BP、PSO-BP、PSO-GA-BP等方法,SHPSO-GA-BP由于将PSO与GA进行更优的深度融合,具有更好的预测性能,可以用于辛烷值的预测。 展开更多
关键词 辛烷值 预测 神经网络 遗传算法 粒子群算法 SHpso-GA-BP神经网络 优化
在线阅读 下载PDF
基于PCA的PSO-BP入侵检测研究 被引量:23
16
作者 刘珊珊 谢晓尧 +3 位作者 景凤宣 徐洋 张帅 汪自旺 《计算机应用研究》 CSCD 北大核心 2016年第9期2795-2798,共4页
为了提高入侵检测系统的检测率、实时性及降低误报率,提出一种基于主成分分析方法(PCA)的变惯性因子粒子群算法(PSO)优化BP神经网络算法。该方法结合了PCA理论、BP局部搜索和PSO的全局寻优能力,在数据预处理中,通过主成分分析方法进行... 为了提高入侵检测系统的检测率、实时性及降低误报率,提出一种基于主成分分析方法(PCA)的变惯性因子粒子群算法(PSO)优化BP神经网络算法。该方法结合了PCA理论、BP局部搜索和PSO的全局寻优能力,在数据预处理中,通过主成分分析方法进行特征提取,作为BP网络的输入量。在反复训练学习过程中,通过变惯性因子粒子群算法优化BP神经网络的权值和阈值,达到训练误差精度范围内,将优化过的BP网络用于入侵检测。通过实验分析和比较,该算法提高了入侵检测的正确率、泛化能力和实时性,降低了误报率和漏报率,加快了收敛速度,迭代次数少,有一定的研究意义。 展开更多
关键词 主成分分析 粒子群优化 BP神经网络 入侵检测
在线阅读 下载PDF
基于PSO-BP神经网络的湿度传感器温度补偿 被引量:50
17
作者 行鸿彦 邹水平 +1 位作者 徐伟 张强 《传感技术学报》 CAS CSCD 北大核心 2015年第6期864-869,共6页
针对自动气象站采用的HMP45D型温湿一体化传感器在实际应用过程中易受温度影响的问题,提出了基于粒子群优化算法(PSO)的BP神经网络温度补偿模型,利用粒子群优化算法对BP神经网络的初始权值阈值进行全局寻优,将粒子群优化算法优化好的权... 针对自动气象站采用的HMP45D型温湿一体化传感器在实际应用过程中易受温度影响的问题,提出了基于粒子群优化算法(PSO)的BP神经网络温度补偿模型,利用粒子群优化算法对BP神经网络的初始权值阈值进行全局寻优,将粒子群优化算法优化好的权值阈值赋给BP神经网络,对BP神经网络进行训练。根据不同温度条件下测得的多组湿度传感器数据,通过建立模型,实现温度补偿,与传统BP神经网络补偿结果进行比较。实验表明,与传统BP神经网络模型相比,利用PSO-BP神经网络模型进行温度补偿后所得的误差绝对值之和降低了10.3887%RH,PSO-BP神经网络可以克服传统BP神经网络易陷入局部极值的局限,补偿精度更高,能更加有效地补偿温度对湿度传感器的影响。 展开更多
关键词 温度补偿 粒子群优化算法 BP神经网络 湿度传感器
在线阅读 下载PDF
基于Spark框架和PSO优化算法的电力通信网络安全态势预测 被引量:19
18
作者 金鑫 李龙威 +2 位作者 苏国华 刘晓蕾 季佳男 《计算机科学》 CSCD 北大核心 2017年第S1期366-371,共6页
随着电力通信网络规模的不断扩大,电力通信网络不间断地产生海量通信数据。同时,对通信网络的攻击手段也在不断进化,给电力通信网络的安全造成极大威胁。针对以上问题,结合Spark大数据计算框架和PSO优化神经网络算法的优点,提出基于Spar... 随着电力通信网络规模的不断扩大,电力通信网络不间断地产生海量通信数据。同时,对通信网络的攻击手段也在不断进化,给电力通信网络的安全造成极大威胁。针对以上问题,结合Spark大数据计算框架和PSO优化神经网络算法的优点,提出基于Spark内存计算框架的并行PSO优化神经网络算法对电力通信网络的安全态势进行预测。本研究首先引入Spark计算框架,Spark框架具有内存计算以及准实时处理的特点,符合电力通信大数据处理的要求。然后提出PSO优化算法对神经网络的权值进行修正,以增加神经网络的学习效率和准确性。之后结合RDD的并行特点,提出了一种并行PSO优化神经网络算法。最后通过实验比较可以看出,基于Spark框架的PSO优化神经网络算法的准确度高,且相较于传统基于Hadoop的预测方法在处理速度上有显著提高。 展开更多
关键词 Spark计算框架 粒子群算法 并行pso优化神经网络 电力通信网络 安全态势预测
在线阅读 下载PDF
基于改进PSO-BPNN的输油管道内腐蚀速率研究 被引量:21
19
作者 凌晓 徐鲁帅 +3 位作者 梁瑞 郭凯 崔本廷 岳守体 《中国安全生产科学技术》 CAS CSCD 北大核心 2019年第10期63-68,共6页
为解决输油管道易腐蚀,且腐蚀程度难以测量的问题,提出使用改进的粒子群算法(PSO)优化误差反向传播神经网络(BPNN)对输油管道内腐蚀速率进行预测。改进的PSO算法提升了自身搜索到全局最优的能力,可为BPNN提供最优初始权值和阈值,从而有... 为解决输油管道易腐蚀,且腐蚀程度难以测量的问题,提出使用改进的粒子群算法(PSO)优化误差反向传播神经网络(BPNN)对输油管道内腐蚀速率进行预测。改进的PSO算法提升了自身搜索到全局最优的能力,可为BPNN提供最优初始权值和阈值,从而有效避免BPNN易陷入局部最优的问题发生。以某条输油管线为例,分别运用标准的BPNN模型、PSO-BPNN以及改进的PSO-BPNN对该管线内腐蚀速率进行预测。结果表明:基于改进的PSO-BPNN的预测结果平均相对误差为5.57%,预测精度较BPNN和PSO-BPNN有明显提升。使用改进的PSO-BPNN预测输油管道的腐蚀速率可为管道的检测维修提供可靠的理论和技术支撑。 展开更多
关键词 输油管道 粒子群算法 BP神经网络 腐蚀速率
在线阅读 下载PDF
基于PSO-BP神经网络的水焦浆管道压降预测 被引量:25
20
作者 马修元 段钰锋 +1 位作者 刘猛 李华锋 《中国电机工程学报》 EI CSCD 北大核心 2012年第5期54-60,共7页
在小型浆体流动试验系统上采用4根不同管径的直管考察水焦浆的阻力特性。水焦浆在管内流动存在壁面滑移效应,具有滑移减阻现象,压降预测需要进行壁面滑移修正。利用粒子群优化算法(particle swarm optimization,PSO)对BP神经网络进行改... 在小型浆体流动试验系统上采用4根不同管径的直管考察水焦浆的阻力特性。水焦浆在管内流动存在壁面滑移效应,具有滑移减阻现象,压降预测需要进行壁面滑移修正。利用粒子群优化算法(particle swarm optimization,PSO)对BP神经网络进行改进,建立考虑5因子影响因素后的水焦浆管道输送压降PSO-BP神经网络预测模型;采用神经网络预测模型对水焦浆在管道输送中的压降进行了预测,并将预测值与试验值进行比较。结果表明:粒子群优化算法改进的神经网络模型可以有效预测水焦浆在管道输送过程中的压降,预测值与试验值之间误差较小,平均绝相对误差不超过10%。 展开更多
关键词 水焦浆 压降 壁面滑移 神经网络 粒子群优化算法
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部