期刊文献+
共找到138篇文章
< 1 2 7 >
每页显示 20 50 100
Multi-Source Underwater DOA Estimation Using PSO-BP Neural Network Based on High-Order Cumulant Optimization
1
作者 Haihua Chen Jingyao Zhang +3 位作者 Bin Jiang Xuerong Cui Rongrong Zhou Yucheng Zhang 《China Communications》 SCIE CSCD 2023年第12期212-229,共18页
Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be ma... Due to the complex and changeable environment under water,the performance of traditional DOA estimation algorithms based on mathematical model,such as MUSIC,ESPRIT,etc.,degrades greatly or even some mistakes can be made because of the mismatch between algorithm model and actual environment model.In addition,the neural network has the ability of generalization and mapping,it can consider the noise,transmission channel inconsistency and other factors of the objective environment.Therefore,this paper utilizes Back Propagation(BP)neural network as the basic framework of underwater DOA estimation.Furthermore,in order to improve the performance of DOA estimation of BP neural network,the following three improvements are proposed.(1)Aiming at the problem that the weight and threshold of traditional BP neural network converge slowly and easily fall into the local optimal value in the iterative process,PSO-BP-NN based on optimized particle swarm optimization(PSO)algorithm is proposed.(2)The Higher-order cumulant of the received signal is utilized to establish the training model.(3)A BP neural network training method for arbitrary number of sources is proposed.Finally,the effectiveness of the proposed algorithm is proved by comparing with the state-of-the-art algorithms and MUSIC algorithm. 展开更多
关键词 gaussian colored noise higher-order cumulant multiple sources particle swarm optimization(pso)algorithm pso-BP neural network
在线阅读 下载PDF
基于PSO-GA优化的TOP-HAT形态学滤波器及其应用
2
作者 高德远 王建刚 《航空计算技术》 2013年第3期119-123,共5页
针对机载红外图像中运动弱小点目标检测的难题,提出了一种基于PSO-GA训练参数的形态学滤波器。以粒子群优化算法(Particle Swarm Optimization,PSO)为主线,按PSO算法中标准的速度和位置更新,遗传算法(Ge-netic Algorithm,GA)采用新的区... 针对机载红外图像中运动弱小点目标检测的难题,提出了一种基于PSO-GA训练参数的形态学滤波器。以粒子群优化算法(Particle Swarm Optimization,PSO)为主线,按PSO算法中标准的速度和位置更新,遗传算法(Ge-netic Algorithm,GA)采用新的区间离散化编码和自适应的主次式交叉与变异算子,将遗传算法与粒子群优化算法的自动更新特征结合在一起,通过优化搜索全局空间获得形态学滤波器的最优参数,进而确保优化的形态学滤波器具有良好的滤波性及时效性。通过对低信噪比红外图像(SNR约为2)的测试,检测概率可以达到98%以上,与利用神经网络(Neural Network,NN)训练结构元素后的Top-Hat形态学滤波器相比提高了2%~3%。与GA算法相对,训练算法效能提高20%,提高了搜索最佳值的能力。 展开更多
关键词 粒子群优化算法 遗传算法 神经网络 top-Hat形态学滤波器
在线阅读 下载PDF
基于PSO-Elman神经网络的井底风温预测模型
3
作者 程磊 李正健 +1 位作者 史浩镕 王鑫 《工矿自动化》 CSCD 北大核心 2024年第1期131-137,共7页
目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒... 目前井下风温预测大多采用BP神经网络,但其预测精度受学习样本数量的影响,且容易陷入局部最优,Elman神经网络具备局部记忆能力,提高了网络的稳定性和动态适应能力,但仍然存在收敛速度过慢、易陷入局部最优的问题。针对上述问题,采用粒子群优化(PSO)算法对Elman神经网络的权值和阈值进行优化,建立了基于PSO-Elman神经网络的井底风温预测模型。分析得出入风相对湿度、入风温度、地面大气压力和井筒深度是井底风温的主要影响因素,因此将其作为模型的输入数据,模型的输出数据为井底风温。在相同样本数据集下的实验结果表明:Elman模型迭代90次后收敛,PSO-Elman模型迭代41次后收敛,说明PSO-Elman模型收敛速度更快;与BP神经网络模型、支持向量回归模型和Elman模型相比,PSO-Elman模型的预测误差较低,平均绝对误差、均方误差(MSE)、平均绝对百分比误差分别为0.376 0℃,0.278 3,1.95%,决定系数R^(2)为0.992 4,非常接近1,表明预测模型具有良好的预测效果。实例验证结果表明,PSO-Elman模型的相对误差范围为-4.69%~1.27%,绝对误差范围为-1.06~0.29℃,MSE为0.26,整体预测精度可满足井下实际需要。 展开更多
关键词 井下热害防治 井底风温预测 粒子群优化算法 ELMAN神经网络 pso-Elman
在线阅读 下载PDF
Quantitative algorithm for airborne gamma spectrum of large sample based on improved shuffled frog leaping-particle swarm optimization convolutional neural network 被引量:1
4
作者 Fei Li Xiao-Fei Huang +5 位作者 Yue-Lu Chen Bing-Hai Li Tang Wang Feng Cheng Guo-Qiang Zeng Mu-Hao Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期242-252,共11页
In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamm... In airborne gamma ray spectrum processing,different analysis methods,technical requirements,analysis models,and calculation methods need to be established.To meet the engineering practice requirements of airborne gamma-ray measurements and improve computational efficiency,an improved shuffled frog leaping algorithm-particle swarm optimization convolutional neural network(SFLA-PSO CNN)for large-sample quantitative analysis of airborne gamma-ray spectra is proposed herein.This method was used to train the weight of the neural network,optimize the structure of the network,delete redundant connections,and enable the neural network to acquire the capability of quantitative spectrum processing.In full-spectrum data processing,this method can perform the functions of energy spectrum peak searching and peak area calculations.After network training,the mean SNR and RMSE of the spectral lines were 31.27 and 2.75,respectively,satisfying the demand for noise reduction.To test the processing ability of the algorithm in large samples of airborne gamma spectra,this study considered the measured data from the Saihangaobi survey area as an example to conduct data spectral analysis.The results show that calculation of the single-peak area takes only 0.13~0.15 ms,and the average relative errors of the peak area in the U,Th,and K spectra are 3.11,9.50,and 6.18%,indicating the high processing efficiency and accuracy of this algorithm.The performance of the model can be further improved by optimizing related parameters,but it can already meet the requirements of practical engineering measurement.This study provides a new idea for the full-spectrum processing of airborne gamma rays. 展开更多
关键词 Large sample Airborne gamma spectrum(AGS) Shuffled frog leaping algorithm(SFLA) Particle swarm optimization(pso) Convolutional neural network(CNN)
在线阅读 下载PDF
GA-BP和PSO-BP预测模型在九龙矿煤层底板突水预测中的应用研究 被引量:1
5
作者 刘滢 卢兰萍 +3 位作者 王铁记 靳子栋 张会松 卫皓皓 《煤炭技术》 CAS 2024年第6期169-173,共5页
目前,煤层开采环境复杂,随着开采深度、开采强度的增加,面临多变的突水因素和复杂的突水机理,且各因素间相互联系的不确定性,使底板突水预测的难度不断增加。对GA-BP与PSO-BP两种组合优化方法进行描述、对比。两种组合优化方法克服了神... 目前,煤层开采环境复杂,随着开采深度、开采强度的增加,面临多变的突水因素和复杂的突水机理,且各因素间相互联系的不确定性,使底板突水预测的难度不断增加。对GA-BP与PSO-BP两种组合优化方法进行描述、对比。两种组合优化方法克服了神经网络容易收敛到局部最小值,以及收敛速度慢的缺点,对煤层底板突水都能实现较高精度,具有强大的泛化能力。通过对两种组合优化方法的预测模型做对比,发现GA-BP模型更优于PSO-BP模型,证明GA-BP组合优化方法更适合对底板突水危险性进行预测。 展开更多
关键词 GA-BP pso-BP BP神经网络 组合优化方法 底板突水
在线阅读 下载PDF
基于PSO-BP神经网络的经济型二手车估价分析
6
作者 蔡云 张又水 +2 位作者 吴澳琪 陈森 赵蕾 《内燃机与配件》 2024年第1期109-112,共4页
针对BP神经网络预测二手车价格时易陷入局部极小值以及价格影响因素间存在一定相关性的问题,本文提出了一种基于主成分分析(PCA)和粒子群算法(PSO)优化BP神经网络的价格评估模型。本文将PCA降维后的10个主成分作为影响二手车价格的评估... 针对BP神经网络预测二手车价格时易陷入局部极小值以及价格影响因素间存在一定相关性的问题,本文提出了一种基于主成分分析(PCA)和粒子群算法(PSO)优化BP神经网络的价格评估模型。本文将PCA降维后的10个主成分作为影响二手车价格的评估参数。基于BP神经网络建立经济型二手车价格评估模型,并使用粒子群算法优化网络的权值和阈值,进一步提高网络的预测精度。该模型一定程度上克服了BP神经网络的不足,为二手车价格评估提供了参考。 展开更多
关键词 经济型二手车 估价模型 BP神经网络 主成分分析(PCA) 粒子群算法(pso)
在线阅读 下载PDF
基于PSO-CNN-GRU模型的无人机短期航迹预测
7
作者 张成佳 《舰船电子工程》 2024年第5期45-49,共5页
针对无人机(Unmanned Aerial Vehicle,UAV)航迹预测问题,为了提升航迹预测的收敛速度和精度,论文提出了一种基于粒子群算法优化,卷积神经网络与门控循环单元网络相结合的PSO-CNN-GRU无人机航迹预测模型。为了解决神经网络人工调参难以... 针对无人机(Unmanned Aerial Vehicle,UAV)航迹预测问题,为了提升航迹预测的收敛速度和精度,论文提出了一种基于粒子群算法优化,卷积神经网络与门控循环单元网络相结合的PSO-CNN-GRU无人机航迹预测模型。为了解决神经网络人工调参难以获得最优解的问题,通过PSO算法进行自动调参,对GRU网络的隐藏层规模、学习率、批训练大小等参数进行优化,避免形成局部最优解;针对历史关键信息与重要特征的提取问题,通过CNN网络提取变量间的局部依赖关系,实现隐藏特征的挖掘。实验结果表明,与原始GRU模型相比,PSO-CNN-GRU模型的MAE、MSE的值分别降低了65.13%、73.25%,有着较好的准确性与鲁棒性。 展开更多
关键词 粒子群(pso)算法 卷积神经网络(CNN) 门控循环单元(GRU) 航迹预测 无人机
在线阅读 下载PDF
边坡稳定性的CPSO-BP模型研究 被引量:29
8
作者 胡军 董建华 +1 位作者 王凯凯 黄贵臣 《岩土力学》 EI CAS CSCD 北大核心 2016年第S1期577-582 590,共7页
为了分析边坡的稳定性,利用协调粒子群算法和BP网络建立了边坡稳定性CPSO-BP预测模型。BP网络能够很好地描述边坡稳定性与其影响因素之间复杂的非线性关系,将内摩擦角、边坡角、岩石重度、边坡高度、黏聚力、孔隙压力比6个主要影响因素... 为了分析边坡的稳定性,利用协调粒子群算法和BP网络建立了边坡稳定性CPSO-BP预测模型。BP网络能够很好地描述边坡稳定性与其影响因素之间复杂的非线性关系,将内摩擦角、边坡角、岩石重度、边坡高度、黏聚力、孔隙压力比6个主要影响因素作为网络的输入,将边坡稳定性系数作为网络的输出。为避免BP网络陷入局部最优,利用协调粒子群算法的全局优化能力确定BP网络的连接权值和阀值,使BP网络的优势得到分发挥,达到提高模型预测精度目的。实例表明CPSO-BP模型有更好地预测精度以及将其应用于边坡稳定性预测是可行的。 展开更多
关键词 粒子群算法 协调 BP神经网络 边坡 稳定性评价
在线阅读 下载PDF
PSO算法结合BP神经网络在传感器静态非线性校正中的应用 被引量:5
9
作者 张媛媛 徐科军 +2 位作者 许耀华 黄胜初 Yuan-yuan Ke-jun Yao-hua Sheng-chu 《计量学报》 CSCD 北大核心 2009年第6期-,共4页
将粒子群优化(PSO)算法与BP神经网络相结合,应用在传感器静态非线性特性的校正中.用PSO算法所得到的全局最优值作为BP神经网络的初始权值,训练BP神经网络,训练结束后的神经网络作为传感器的静态特性校正器.应用结果表明,该方法可以提高B... 将粒子群优化(PSO)算法与BP神经网络相结合,应用在传感器静态非线性特性的校正中.用PSO算法所得到的全局最优值作为BP神经网络的初始权值,训练BP神经网络,训练结束后的神经网络作为传感器的静态特性校正器.应用结果表明,该方法可以提高BP神经网络的精度,并且该神经网络具有良好的泛化能力. Abstract: A static nonlinear errors method for correcting the sensors based on BP neural network using particle swarm optimization (PSO) is described. The global best values of particle swarm are used as initial weights of BP neural network to train BP neural network. Then the trained neural network is regarded as the sensor's corrector. The application results show that this method can improve the precision of the BP neural network, and the generalization capability of the neural network is good. 展开更多
关键词 pso算法 神经网络 传感器 非线性校正 BP neural network BP neural network particle swarm optimization generalization capability application results 全局最优值 粒子群优化 非线性特性 应用结果 训练 静态特性 泛化能力 初始权值 initial improve 校正器
在线阅读 下载PDF
基于PSO的BP神经网络-Markov船舶交通流量预测模型 被引量:19
10
作者 范庆波 江福才 +1 位作者 马全党 马勇 《上海海事大学学报》 北大核心 2018年第2期22-27,54,共7页
为对船舶交通流量进行准确预测,结合BP神经网络和Markov算法,构建BP神经网络-Markov预测模型。引入粒子群优化(particle swarm optimization,PSO)算法对模型进行优化,克服利用Markov模型选取白化系数的不足。用该模型预测武汉长江大桥... 为对船舶交通流量进行准确预测,结合BP神经网络和Markov算法,构建BP神经网络-Markov预测模型。引入粒子群优化(particle swarm optimization,PSO)算法对模型进行优化,克服利用Markov模型选取白化系数的不足。用该模型预测武汉长江大桥船舶交通流量的月度数据,结果表明:与BP神经网络的预测精度82.439 0%相比,基于PSO的BP神经网络-Markov预测模型的预测精度提高到91.050 8%,该模型的合理性和准确性得到验证。 展开更多
关键词 船舶交通流量预测 BP神经网络 马尔科夫模型(Markov模型) 粒子群优化(PS0)
在线阅读 下载PDF
基于PSO-BP神经网络的纱线质量预测 被引量:14
11
作者 熊经纬 杨建国 徐兰 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第4期498-502,共5页
针对复杂纺纱过程中成纱断裂强度难以预测的问题,提出一种基于粒子群优化算法(PSO)优化BP神经网络的成纱断裂强度预测方法.该方法采用PSO优化神经网络的权值和阈值,用来提高神经网络的收敛速度和获得全局最优解的能力.以纺纱车间大量现... 针对复杂纺纱过程中成纱断裂强度难以预测的问题,提出一种基于粒子群优化算法(PSO)优化BP神经网络的成纱断裂强度预测方法.该方法采用PSO优化神经网络的权值和阈值,用来提高神经网络的收敛速度和获得全局最优解的能力.以纺纱车间大量现场质量检测数据为对象,进行预测验证,结果表明,PSO-BP神经网络在预测相关性(预测值与实际值的一致性程度)上与传统BP算法相比提高5.0%,与GA-BP算法相比提高4.6%,在预测精度上均要好于BP神经网络与GABP神经网络. 展开更多
关键词 BP神经网络 粒子群算法(pso) 纱线质量预测
在线阅读 下载PDF
自适应PSO网络整定的航空发动机全程滑模控制 被引量:6
12
作者 苗卓广 谢寿生 +3 位作者 何秀然 王海涛 吴勇 白玉 《推进技术》 EI CAS CSCD 北大核心 2011年第2期220-224,234,共6页
针对现代航空发动机是一个具有不确定性的强非线性系统,提出了一种基于自适应PSO网络整定的航空发动机全程滑模控制方法。设计了一类全程滑模面非线性函数,函数中含有变参数指数函数,其参数由一种新的自适应粒子群学习算法(PSO)结合RBF... 针对现代航空发动机是一个具有不确定性的强非线性系统,提出了一种基于自适应PSO网络整定的航空发动机全程滑模控制方法。设计了一类全程滑模面非线性函数,函数中含有变参数指数函数,其参数由一种新的自适应粒子群学习算法(PSO)结合RBF神经网络来整定。全程滑模控制保证了控制系统的全程鲁棒性,同时,由稳态误差收敛速度和滑模抖振幅度建立参数优化指标,用自适应PSO神经网络快速搜索当前的全局最优点。仿真结果表明,所设计的控制器取得了良好的效果,削弱了抖振。 展开更多
关键词 航空发动机 全程滑模控制 RBF神经网络 粒子群优化算法
在线阅读 下载PDF
基于PSO优化LS-SVM的短期风速预测 被引量:16
13
作者 龚松建 袁宇浩 +1 位作者 王莉 张广明 《可再生能源》 CAS 北大核心 2011年第2期22-27,共6页
提出了一种基于粒子群(PSO)算法优化最小二乘支持向量机(LS-SVM)的风电场风速预测方法。以相关性较高的历史风速序列作为输入,建立预测模型,并用粒子群算法优化模型参数。在对未来1 h风速进行预测时,文章所提出的模型比最小二乘支持向... 提出了一种基于粒子群(PSO)算法优化最小二乘支持向量机(LS-SVM)的风电场风速预测方法。以相关性较高的历史风速序列作为输入,建立预测模型,并用粒子群算法优化模型参数。在对未来1 h风速进行预测时,文章所提出的模型比最小二乘支持向量机模型及BP神经网络模型具有较高的预测精度和运算速度。算例结果表明,经粒子群优化的最小二乘支持向量机算法是进行短期风速预测的有效方法。 展开更多
关键词 风速预测 粒子群优化 最小二乘支持向量机 神经网络
在线阅读 下载PDF
改进PSO算法结合FLANN在传感器动态建模中的应用 被引量:20
14
作者 张媛媛 徐科军 许耀华 《振动与冲击》 EI CSCD 北大核心 2009年第1期1-3,8,共4页
将改进的粒子群优化(PSO)算法和函数联接型神经网络(FLANN)相结合,实现传感器的动态线性建模。利用传感器的动态标定实验数据,首先训练FLANN神经网络,网络训练结束后的权值作为粒子群中某个粒子的初始值,而后利用改进的PSO算法继续寻优... 将改进的粒子群优化(PSO)算法和函数联接型神经网络(FLANN)相结合,实现传感器的动态线性建模。利用传感器的动态标定实验数据,首先训练FLANN神经网络,网络训练结束后的权值作为粒子群中某个粒子的初始值,而后利用改进的PSO算法继续寻优,得到的全局最优值即为所求的传感器动态模型的系数。实验结果表明,该方法结合了PSO和FLANN两者的优点,建模精度高。 展开更多
关键词 MAF传感器 粒子群优化算法 函数联接型神经网络 建模
在线阅读 下载PDF
基于PSO的板形板厚小波神经网络解耦PID控制 被引量:5
15
作者 王建辉 黄敏 顾树生 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第3期224-227,共4页
针对板形控制和板厚控制是相互耦合的综合系统,提出了一种新的解耦PID控制算法·首先用小波神经网络构造α阶时延逆系统,对综合系统进行输入输出解耦;然后对解耦后的独立的单变量系统采用PID控制·这种解耦方法无论是从理论分... 针对板形控制和板厚控制是相互耦合的综合系统,提出了一种新的解耦PID控制算法·首先用小波神经网络构造α阶时延逆系统,对综合系统进行输入输出解耦;然后对解耦后的独立的单变量系统采用PID控制·这种解耦方法无论是从理论分析还是仿真验证,均证明是可以实现完全解耦的·考虑到被控对象是一个带有时滞的非线性系统,提出采用PSO优化算法对PID参数进行自适应调整·仿真结果表明所用方法简单有效,并具有良好的跟随性能和抗干扰能力;其控制效果优于传统的解耦PID控制· 展开更多
关键词 小波神经网络 板形 板厚 逆系统 粒子群优化算法(pso)
在线阅读 下载PDF
基于PSO-BP神经网络的参考作物蒸腾量预测 被引量:11
16
作者 张志政 周威 《节水灌溉》 北大核心 2014年第11期87-90,95,共5页
针对以往BP神经网络收敛速度慢及易陷于局部极小值等问题,引入粒子群算法优化BP网络的权值和阈值,建立PSO-BP神经网络,预测参考作物蒸腾量ET0。以西安地区的相关资料为基础,设计9种影响因子组合方案,利用PSO-BP网络模型进行ET0的预测,... 针对以往BP神经网络收敛速度慢及易陷于局部极小值等问题,引入粒子群算法优化BP网络的权值和阈值,建立PSO-BP神经网络,预测参考作物蒸腾量ET0。以西安地区的相关资料为基础,设计9种影响因子组合方案,利用PSO-BP网络模型进行ET0的预测,结果表明,该模型运算速度快,预测精度较高;对比分析9种方案的预测结果发现,方案7为最优,该方案只需选用平均温度、平均相对湿度、风速和日照时数四项影响因子,即可获得较高精度的参考作物蒸腾量预测值。 展开更多
关键词 粒子群算法 pso-BP 神经网络 参考作物蒸腾量
在线阅读 下载PDF
PSO-RBF神经网络在城市需水量预测中的应用 被引量:9
17
作者 张志宇 赵丹国 侯晓宇 《水电能源科学》 北大核心 2013年第6期55-57,共3页
为克服径向基函数(RBF)神经网络由于参数选取不当而对其收敛性能的干扰,利用粒子群优化算法(PSO)的全局搜索能力对RBF神经网络的三个参数进行寻优,建立了基于PSO-RBF神经网络算法的城市需水量预测模型。结果显示,PSO-RBF神经网络算法拟... 为克服径向基函数(RBF)神经网络由于参数选取不当而对其收敛性能的干扰,利用粒子群优化算法(PSO)的全局搜索能力对RBF神经网络的三个参数进行寻优,建立了基于PSO-RBF神经网络算法的城市需水量预测模型。结果显示,PSO-RBF神经网络算法拟合某市1998~2007年需水量数据的平均相对误差为0.18%,预测2008~2010年需水量数据的平均相对误差为3.84%,耗时1.2s;通过RBF神经网络算法拟合的误差平均值为0.28%,预测的平均相对误差为5.62%,耗时2.1s,表明PSO-RBF神经网络算法具有更高的收敛速度与精度。 展开更多
关键词 城市需水量 pso-RBF神经网络 预测模型 寻优
在线阅读 下载PDF
基于PSO-BP神经网络的砂岩三轴抗压强度预测 被引量:9
18
作者 晏斌 郭永成 +1 位作者 朱千凡 胡鹏 《三峡大学学报(自然科学版)》 CAS 北大核心 2019年第3期51-54,共4页
为研究砂岩在水和温度作用下的抗压强度特性,以三峡库区砂岩为研究对象,进行温度场、渗流场、应力场耦合试验研究,建立了粒子群优化BP神经网络(PSO-BPNN)预测模型,该模型考虑了影响砂岩抗压强度的多种因素(温度、孔隙水压等),预测砂岩... 为研究砂岩在水和温度作用下的抗压强度特性,以三峡库区砂岩为研究对象,进行温度场、渗流场、应力场耦合试验研究,建立了粒子群优化BP神经网络(PSO-BPNN)预测模型,该模型考虑了影响砂岩抗压强度的多种因素(温度、孔隙水压等),预测砂岩三轴抗压强度值.较传统BP神经网络(BPNN)模型,PSO-BP神经网络模型能够更好地预测三场耦合作用下砂岩的抗压强度变化特征,预测精度更高. 展开更多
关键词 三场耦合作用 三轴抗压强度 粒子群算法 BP神经网络
在线阅读 下载PDF
基于PSO-Elman模型的网络流量预测 被引量:11
19
作者 顾兆军 李冰 刘涛 《现代电子技术》 北大核心 2019年第1期82-86,共5页
针对网络流量的混沌性特点以及传统神经网络处理网络流量预测问题易陷入局部极小导致预测精度不高的问题,提出在相空间重构基础上,采用粒子群算法(PSO)优化Elman神经网络初始参数的网络流量预测模型。首先对网络流量时间序列进行相空间... 针对网络流量的混沌性特点以及传统神经网络处理网络流量预测问题易陷入局部极小导致预测精度不高的问题,提出在相空间重构基础上,采用粒子群算法(PSO)优化Elman神经网络初始参数的网络流量预测模型。首先对网络流量时间序列进行相空间重构,将重构后的流量序列作为模型的输入;再利用PSO算法全局搜索能力对Elman神经网络初始参数进行优化;最后利用训练好的Elman神经网络对网络流量进行预测。仿真结果表明,相比其他流量预测方法,基于PSOElman模型的网络流量预测提高了预测准确率。 展开更多
关键词 相空间重构 粒子群算法 ELMAN神经网络 混沌时间序列 网络流量预测 参数优化
在线阅读 下载PDF
基于α阶逆神经网络解耦的循环流化床锅炉燃烧-汽水系统PSO-PID控制 被引量:7
20
作者 董泽 孙剑 +1 位作者 张媛媛 韩璞 《动力工程》 CSCD 北大核心 2009年第6期549-553,564,共6页
提出了利用α阶逆系统解耦原理构造神经网络α阶逆系统,并对循环流化床(CFB)锅炉的床温定值扰动和主蒸汽压力的定值扰动进行了仿真.结果表明:利用神经网络构造的α阶积分逆系统有效解决了CFB锅炉的燃烧-汽水系统的解耦问题,神经网络逼... 提出了利用α阶逆系统解耦原理构造神经网络α阶逆系统,并对循环流化床(CFB)锅炉的床温定值扰动和主蒸汽压力的定值扰动进行了仿真.结果表明:利用神经网络构造的α阶积分逆系统有效解决了CFB锅炉的燃烧-汽水系统的解耦问题,神经网络逼近非线性函数,积分微分环节表征动态特性,分工明确,结构简单,所需原系统先验知识少,具有工程应用价值. 展开更多
关键词 循环流化床 燃烧-汽水系统 解耦 逆系统 神经网络 粒子群 PID
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部