New typical cross-flow Rotating Packed Bed(RPB)called multi-pulverizing RPB was manufactured.There is enough void in multi-pulverizing RPB,where liquid easily flows and is repeatedly pulverized by light packing,which ...New typical cross-flow Rotating Packed Bed(RPB)called multi-pulverizing RPB was manufactured.There is enough void in multi-pulverizing RPB,where liquid easily flows and is repeatedly pulverized by light packing,which decreases the material consumed,lightens the weight,and compacts the structure.Mass and heat transfer property in the new type PRB were studied by two experimental models.In the mass transfer model,the axial fan pumping gas press is only 100 Pa,mass transfer coefficient and volumetric mass transfer coefficient are similar to countercurrent RPB,which are an order quantity lager than that in the conventional packed tower.In the heat transfer experiment,the axial fan pumping gas press is only 120 Pa;volumetric heatwhich especially suits the treatment of large gas flow and lower gas pressure drop.展开更多
Ice-going ships play a crucial role in polar transportation and resource extraction.Different from the existing modeling approach which assumes that ships remain stationary,dynamic overset grid technology and DFBI(Dyn...Ice-going ships play a crucial role in polar transportation and resource extraction.Different from the existing modeling approach which assumes that ships remain stationary,dynamic overset grid technology and DFBI(Dynamic Fluid-Body Interaction)method are employed in this paper to enable the free-running motion of the ship in modeling.A numerical model capable of simulating a ship navigating through pack ice area is proposed,which uses Computational Fluid Dynamics(CFD)method to solve the flow field and applies the Discrete Element Method(DEM)to simulate ship-ice and ice-ice interactions.Besides,the proposed high-precision method for generating pack ice area can be used in conjunction with the proposed numerical model.By comparing the numerical results with the available model test data and experimental observations,the effectiveness of the numerical model is validated,demonstrating its strong capability of predicting resistance and simulating ship navigation in pack ice,as well as its significant potential and applicability for further studies.展开更多
2004年Abdel-Rehim首次提出了注射器微萃取(microextraction by packed sorbent,MEPS)技术,即用最小量的溶剂反复多次萃取药物使其达到最大回收率。MEPS就是将1 mg左右的固相吸附剂材料填充到100-250μL密闭的注射器里,或者是填充到...2004年Abdel-Rehim首次提出了注射器微萃取(microextraction by packed sorbent,MEPS)技术,即用最小量的溶剂反复多次萃取药物使其达到最大回收率。MEPS就是将1 mg左右的固相吸附剂材料填充到100-250μL密闭的注射器里,或者是填充到针管与针头之间的暗盒内。使用自动进样器将样品通过注射器,展开更多
Two-dimensional energetic materials(2DEMs),characterized by their exceptional interlayer sliding properties,are recognized as exemplar of low-sensitivity energetic materials.However,the diversity of available 2DEMs is...Two-dimensional energetic materials(2DEMs),characterized by their exceptional interlayer sliding properties,are recognized as exemplar of low-sensitivity energetic materials.However,the diversity of available 2DEMs is severely constrained by the absence of efficient methods for rapidly predicting crystal packing modes from molecular structures,impeding the high-throughput rational design of such materials.In this study,we employed quantified indicators,such as hydrogen bond dimension and maximum planar separation,to quickly screen 172DEM and 16 non-2DEM crystal structures from a crystal database.They were subsequently compared and analyzed,focusing on hydrogen bond donor-acceptor combinations,skeleton features,and intermolecular interactions.Our findings suggest that theπ-πpacking interaction energy is a key determinant in the formation of layered packing modes by planar energetic molecules,with its magnitude primarily influenced by the strongest dimericπ-πinteraction(π-π2max).Consequently,we have delineated a critical threshold forπ-π2max to discern layered packing modes and formulated a theoretical model for predictingπ-π2max,grounded in molecular electrostatic potential and dipole moment analysis.The predictive efficacy of this model was substantiated through external validation on a test set comprising 31 planar energetic molecular crystals,achieving an accuracy of 84%and a recall of 75%.Furthermore,the proposed model shows superior classification predictive performance compared to typical machine learning methods,such as random forest,on the external validation samples.This contribution introduces a novel methodology for the identification of crystal packing modes in 2DEMs,potentially accelerating the design and synthesis of high-energy,low-sensitivity 2DEMs.展开更多
文摘New typical cross-flow Rotating Packed Bed(RPB)called multi-pulverizing RPB was manufactured.There is enough void in multi-pulverizing RPB,where liquid easily flows and is repeatedly pulverized by light packing,which decreases the material consumed,lightens the weight,and compacts the structure.Mass and heat transfer property in the new type PRB were studied by two experimental models.In the mass transfer model,the axial fan pumping gas press is only 100 Pa,mass transfer coefficient and volumetric mass transfer coefficient are similar to countercurrent RPB,which are an order quantity lager than that in the conventional packed tower.In the heat transfer experiment,the axial fan pumping gas press is only 120 Pa;volumetric heatwhich especially suits the treatment of large gas flow and lower gas pressure drop.
文摘Ice-going ships play a crucial role in polar transportation and resource extraction.Different from the existing modeling approach which assumes that ships remain stationary,dynamic overset grid technology and DFBI(Dynamic Fluid-Body Interaction)method are employed in this paper to enable the free-running motion of the ship in modeling.A numerical model capable of simulating a ship navigating through pack ice area is proposed,which uses Computational Fluid Dynamics(CFD)method to solve the flow field and applies the Discrete Element Method(DEM)to simulate ship-ice and ice-ice interactions.Besides,the proposed high-precision method for generating pack ice area can be used in conjunction with the proposed numerical model.By comparing the numerical results with the available model test data and experimental observations,the effectiveness of the numerical model is validated,demonstrating its strong capability of predicting resistance and simulating ship navigation in pack ice,as well as its significant potential and applicability for further studies.
文摘2004年Abdel-Rehim首次提出了注射器微萃取(microextraction by packed sorbent,MEPS)技术,即用最小量的溶剂反复多次萃取药物使其达到最大回收率。MEPS就是将1 mg左右的固相吸附剂材料填充到100-250μL密闭的注射器里,或者是填充到针管与针头之间的暗盒内。使用自动进样器将样品通过注射器,
基金support from National Natural Science Foundation of China(Grant Nos.22275145,22305189and 21875184)Natural Science Foundation of Shaanxi Province(Grant Nos.2022JC-10 and 2024JC-YBQN-0112).
文摘Two-dimensional energetic materials(2DEMs),characterized by their exceptional interlayer sliding properties,are recognized as exemplar of low-sensitivity energetic materials.However,the diversity of available 2DEMs is severely constrained by the absence of efficient methods for rapidly predicting crystal packing modes from molecular structures,impeding the high-throughput rational design of such materials.In this study,we employed quantified indicators,such as hydrogen bond dimension and maximum planar separation,to quickly screen 172DEM and 16 non-2DEM crystal structures from a crystal database.They were subsequently compared and analyzed,focusing on hydrogen bond donor-acceptor combinations,skeleton features,and intermolecular interactions.Our findings suggest that theπ-πpacking interaction energy is a key determinant in the formation of layered packing modes by planar energetic molecules,with its magnitude primarily influenced by the strongest dimericπ-πinteraction(π-π2max).Consequently,we have delineated a critical threshold forπ-π2max to discern layered packing modes and formulated a theoretical model for predictingπ-π2max,grounded in molecular electrostatic potential and dipole moment analysis.The predictive efficacy of this model was substantiated through external validation on a test set comprising 31 planar energetic molecular crystals,achieving an accuracy of 84%and a recall of 75%.Furthermore,the proposed model shows superior classification predictive performance compared to typical machine learning methods,such as random forest,on the external validation samples.This contribution introduces a novel methodology for the identification of crystal packing modes in 2DEMs,potentially accelerating the design and synthesis of high-energy,low-sensitivity 2DEMs.