期刊文献+
共找到208篇文章
< 1 2 11 >
每页显示 20 50 100
Time-resolved characteristics of a nanosecond pulsed multi-hollow needle plate packed bed dielectric barrier discharge
1
作者 秦亮 李瑶 +6 位作者 郭浩 姜楠 宋颖 贾锐 周雄峰 袁皓 杨德正 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期48-57,共10页
In this paper,self-designed multi-hollow needle electrodes are used as a high-voltage electrode in a packed bed dielectric barrier discharge reactor to facilitate fast gas flow through the active discharge area and ac... In this paper,self-designed multi-hollow needle electrodes are used as a high-voltage electrode in a packed bed dielectric barrier discharge reactor to facilitate fast gas flow through the active discharge area and achieve large-volume stable discharge.The dynamic characteristics of the plasma,the generated active species,and the energy transfer mechanisms in both positive discharge(PD)and negative discharge(ND)are investigated by using fast-exposure intensified charge coupled device(ICCD)images and time-resolved optical emission spectra.The experimental results show that the discharge intensity,number of discharge channels,and discharge volume are obviously enhanced when the multi-needle electrode is replaced by a multihollow needle electrode.During a single voltage pulse period,PD mainly develops in a streamer mode,which results in a stronger discharge current,luminous intensity,and E/N compared with the diffuse mode observed in ND.In PD,as the gap between dielectric beads changes from 0 to250μm,the discharge between the dielectric bead gap changes from a partial discharge to a standing filamentary micro-discharge,which allows the plasma to leave the local area and is conducive to the propagation of surface streamers.In ND,the discharge only appears as a diffusionlike mode between the gap of dielectric beads,regardless of whether there is a discharge gap.Moreover,the generation of excited states N_(2)^(+)(B^(2)∑_(u)^(+))and N2(C^(3)Π_(u))is mainly observed in PD,which is attributed to the higher E/N in PD than that in ND.However,the generation of the OH(A^(2)∑^(+))radical in ND is higher than in PD.It is not directly dominated by E/N,but mainly by the resonant energy transfer process between metastable N_(2)(A^(3)∑_(u)^(+))and OH(X^(2)Π).Furthermore,both PD and ND demonstrate obvious energy relaxation processes of electron-to-vibration and vibration-to-vibration,and no vibration-to-rotation energy relaxation process is observed. 展开更多
关键词 packed bed reactor multi-hollow needle electrodes positive and negative discharges optical emission spectra time-resolved images
在线阅读 下载PDF
Effects of Airflow Field on Droplets Diameter inside the Corrugated Packing of a Rotating Packed Bed 被引量:4
2
作者 Xu Chengcheng Jiao Weizhou +3 位作者 Liu Youzhi Guo Liang Yuan Zhiguo Zhang Qiaoling 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第4期38-46,共9页
Rotating packing bed(RPB) has a better mixing performance than traditional mixers and shows potential application in the petroleum industry. However, acquisition of information about the mixing process directly throug... Rotating packing bed(RPB) has a better mixing performance than traditional mixers and shows potential application in the petroleum industry. However, acquisition of information about the mixing process directly through experiments is difficult because of the compact structure and complex multiphase flow pattern in RPB. To study the mixing characteristic, Fluent, the computational fluid dynamics(CFD) software, was used to explore the effect of airflow field on droplet diameter. For conducting calculations, the gas-liquid two-phase flow inside the packing was simulated with the RNG k-ε turbulence model and the Lagrange Discrete Phase Model(DPM), respectively. The numerical calculation results showed that coalescence and breakup of droplets can take place in the gas phase flow inside the packing and can be strengthened with increased rotating speed, thereby leading to the enlargement of the average diameter. 展开更多
关键词 ROTATING packed BED computational fluid dynamics GAS-LIQUID flow field diameter MIXING
在线阅读 下载PDF
Densely packed ultrafine SnO_(2) nanoparticles grown on carbon cloth for selective CO_(2) reduction to formate 被引量:3
3
作者 Xuewan Wang Dan Wu +3 位作者 Xiaomin Kang Jiujun Zhang Xian-Zhu Fu Jing-Li Luo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期159-166,I0005,共9页
Electrochemical reduction of CO_(2) to fuels and chemicals is a viable strategy for CO_(2) utilization and renewable energy storage.Developing free-standing electrodes from robust and scalable electrocatalysts becomes... Electrochemical reduction of CO_(2) to fuels and chemicals is a viable strategy for CO_(2) utilization and renewable energy storage.Developing free-standing electrodes from robust and scalable electrocatalysts becomes highly desirable.Here,dense SnO_(2) nanoparticles are uniformly grown on three-dimensional(3D)fiber network of carbon cloth(CC)by a facile dip-coating and calcination method.Importantly,Zn modification strategy is employed to restrain the growth of long-range order of SnO_(2) lattices and to produce rich grain boundaries.The hybrid architecture can act as a flexible electrode for CO_(2)-to-formate conversion,which delivers a high partial current of 18.8 m A cm-2 with a formate selectivity of 80%at a moderate cathodic potential of-0.947 V vs.RHE.The electrode exhibits remarkable stability over a 16 h continuous operation.The superior performance is attributed to the synergistic effect of ultrafine SnO_(2) nanoparticles with abundant active sites and 3D fiber network of the electrode for efficient mass transport and electron transfer.The sizeable electrodes hold promise for industrial applications. 展开更多
关键词 Densely packed SnO_(2)nanoparticles Grain boundary Defect site Flexible electrode Electrochemical reduction CO_(2)to formate conversion
在线阅读 下载PDF
Removal of high concentration CO_2 from natural gas at elevated pressure via absorption process in packed column 被引量:3
4
作者 L.S.Tan K.K.Lau +1 位作者 M.A.Bustam A.M.Shariff 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第1期7-10,共4页
Carbon dioxide (CO2) removal is an essential step in natural gas (NG) processing to provide high quality gas stream products and minimize operational difficulties. This preliminary study alms to investigate the re... Carbon dioxide (CO2) removal is an essential step in natural gas (NG) processing to provide high quality gas stream products and minimize operational difficulties. This preliminary study alms to investigate the removal of CO2 at high concentration level from the mixture of CO2-NG gas stream at elevated pressure via absorption process. This is to explore the possibility of exploring high CO2 content natural gas reserves by treatment at offshore platform. A mixed amine solvent, Stonvent-II, was used for the absorption of approximately 75 vol% CO2 in CO2-NG stream at a pressure of 10 barg. The initial solvent temperature was varied in order to study the impact of initial temperature on the absorption performance. Preliminary study at temperatures of 35 ℃ and 45 ℃ indicates that Stonvent-II was able to perform almost 100% removal of CO2 under both conditions. However, the CO2 absorption effect took place faster when the initial liquid temperature was lower. This is because when the initial liquid temperature is high, the temperature increase in the packing bed caused by the reaction heat is high which impacts the efficiency of absorption negatively. 展开更多
关键词 CO2 capture ABSORPTION packed column AMINE mild pressures
在线阅读 下载PDF
Preparation and characterization of NaY zeolite in a rotating packed bed 被引量:2
5
作者 Xu Yongquan Cai Lianguo +1 位作者 Shao Lei Chen Jianfeng 《Petroleum Science》 SCIE CAS CSCD 2012年第1期106-109,共4页
NaY Zeolite was synthesized in a rotating packed bed (RPB) for the first time. A Si-A1 gel with a specific composition was used as the structure-directing agent. The as-synthesized NaY Zeolite was characterized with... NaY Zeolite was synthesized in a rotating packed bed (RPB) for the first time. A Si-A1 gel with a specific composition was used as the structure-directing agent. The as-synthesized NaY Zeolite was characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD) and specific surface area (BET). The characterization result showed that the NaY Zeolite had a particle size of approximately 200 rim, n(SiO2)/n(Al203) ratio of 5.03, crystallinity of 96% and specific surface area of 714 m2/g. The experimental results indicated that the structure of NaY Zeolite was related to the synthesis conditions (such as reactors, crystallization time and so on). The micromixing efficiency was proven to be the most important factor for synthesis of NaY Zeolite in the high-gravity environment in RPB. 展开更多
关键词 NaY zeolite CRYSTALLINITY high-gravity preparation characterization rotating packed bed
在线阅读 下载PDF
Porous Structure Analysis of the Packed Beds in a High-Temperature Reactor Pebble Bed Modules Heat Transfer Test Facility 被引量:2
6
作者 REN Cheng YANG Xing-Tuan SUN Yan-Fei 《Chinese Physics Letters》 SCIE CAS CSCD 2013年第2期65-68,共4页
We analyse the porous structure of the packed beds in the heat transfer test facility built for high temperature gas cooled reactors from several aspects,such as oscillatory porosity,average porosity,thickness effect,... We analyse the porous structure of the packed beds in the heat transfer test facility built for high temperature gas cooled reactors from several aspects,such as oscillatory porosity,average porosity,thickness effect,coordination number and contact angle.An understanding and comparison of the porous structure of the facility bed and the real reactor core are developed to make recommendations for the design and analysis of the heat transfer test facility.The results show that there is very little difference between the porous characteristics of the two packed beds of spheres. 展开更多
关键词 POROSITY packed POROUS
在线阅读 下载PDF
Comparison of Mass Transfer Characteristics between Countercurrent-Flow and Crosscurrent-Flow Rotating Packed Bed 被引量:1
7
作者 Qi Guisheng Guo Linya +1 位作者 Liu Youzhi Zhang Dongming 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2019年第4期103-111,共9页
The rotating packed bed(RPB), mainly including the countercurrent-flow RPB(Counter-RPB) and the crosscurrentflow RPB(Cross-RPB) that are classified from the perspective of gas-liquid contact style, is a novel process ... The rotating packed bed(RPB), mainly including the countercurrent-flow RPB(Counter-RPB) and the crosscurrentflow RPB(Cross-RPB) that are classified from the perspective of gas-liquid contact style, is a novel process intensification device. A significant measurement standard for evaluating the performance of RPB is the mass transfer effect. In order to compare the mass transfer characteristics of Counter-RPB and Cross-RPB with the same size, the liquid volumetric mass transfer coefficient(k_La_e) and effective interfacial area(a_e) were measured under identical operating conditions. Meanwhile, the comparison of comprehensive mass transfer performance was conducted using the ratio of ΔP(pressure drop) to kLae as the standard. Experimental results indicated that kLae and ae increased with the increase in liquid spray density q, gas velocity u, and high gravity factor β. Furthermore, compared with the Cross-RPB, the Counter-RPB has higher liquid volumetric mass transfer coefficient and slightly larger effective interfacial area. The experimental results of comprehensive mass transfer performance showed that the Counter-RPB had higher ΔP/k_La_e than the Cross-RPB with changes in liquid spray density and high gravity factor, and there exists a turning point at 0.71 m/s accompanied by a variation with gas velocity. Moreover, the relative error of experimental value to calculated value, which was computed by the correlative expressions of kLae, was less than 5 %. In conclusion, the mass transfer characteristics of RPB are deeply impacted by the manner in which the flows are established and the Cross-RPB would have a great potential for industrial scale-up applications. 展开更多
关键词 rotating packed bed mass transfer crosscurrent-flow countercurrent-flow process intensi fication
在线阅读 下载PDF
Novel predictive tool for accurate estimation of packed column size
8
作者 Alireza Bahadori Hari B.Vuthaluru 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第2期146-150,共5页
Traditionally the majority of fractionation columns in natural gas processing plants were equipped with trays.However an option to trayed columns is to use packing.Packed columns offer a larger surface area per unit v... Traditionally the majority of fractionation columns in natural gas processing plants were equipped with trays.However an option to trayed columns is to use packing.Packed columns offer a larger surface area per unit volume for mass transfer and the continuous gas to liquid contact throughout the column rather than at specific levels (such as in tray columns).For process design purposes,it is essential to estimate the pressure drop for enabling the proper operation of packed columns.In this study,a simple generalized pressure drop correlation (GPDC) which is easier than existing approaches requiring more complicated and longer computations is developed for sizing randomly packed fractionation columns for pressure drops up to 150 mm water per meter of packing.This correlation can be used to estimate pressure drop for a given loading and column diameter.Alternatively,for a given pressure drop the diameter can be determined.The predictions from the proposed correlation have been compared with reported data and found good agreement with average absolute deviation hovering around 4.9%.The proposed predictive tool is superior owing to its accuracy and clear numerical background,wherein the relevant coefficients can be retuned quickly if new and more accurate data are available in the future.This proposed simple-to-use approach can be of immense practical value for the engineers and scientists to have a quick check on the pressure drop in packed columns for a given loading and column diameter.In particular,gas engineers would find the proposed approach can be used very friendly involving no complex expressions with transparent and easy-to-handle calculation steps. 展开更多
关键词 packed columns PACKING pressure drop FLOODING design principles
在线阅读 下载PDF
Degradation of tiamulin by a packed bed dielectric barrier plasma combined with TiO_(2)catalyst
9
作者 Kun YANG Hongwei SHEN +3 位作者 Yueyue LIU Yang LIU Pingji GE Dezheng YANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第9期117-126,共10页
Recently,a plasma catalyst was employed to efflciently degrade antibiotic residues in the environment.In this study,the plasma generated in a packed bed dielectric barrier reactor combined with TiO_(2)catalyst is used... Recently,a plasma catalyst was employed to efflciently degrade antibiotic residues in the environment.In this study,the plasma generated in a packed bed dielectric barrier reactor combined with TiO_(2)catalyst is used to degrade the antibiotic tiamulin(TIA)loaded on the surface of simulated soil particles.The effects of applied voltage,composition of the working gas,gas flow rate and presence or absence of catalyst on the degradation effect were studied.It was found that plasma and catalyst can produce a synergistic effect under optimal conditions(applied voltage 25 k V,oxygen ratio 1%,gas flow rate 0.6 l min^(-1),treatment time 5 min).The degradation efflciency of the plasma combined with catalyst can reach 78.6%,which is 18.4%higher than that of plasma without catalyst.When the applied voltage is 30 k V,the gas flow rate is 1 l min^(-1),the oxygen ratio is 1%and the plasma combined with TiO_(2)catalyst treats the sample for 5 min the degradation efflciency of TIA reached 97%.It can be concluded that a higher applied voltage and longer processing times not only lead to more degradation but also result in a lower energy efflciency.Decreasing the oxygen ratio and gas flow rate could improve the degradation efflciency.The relative distribution and identity of the major TIA degradation product generated was determined by high-performance liquid chromatography–mass spectrometry analysis.The mechanism of TIA removal by plasma and TiO_(2)catalyst was analyzed,and the possible degradation path is discussed. 展开更多
关键词 packed bed dielectric barrier discharge plasma catalyst tiamulin(TIA)antibiotics degradation degradation mechanism
在线阅读 下载PDF
Plasma-assisted ammonia synthesis in a packed-bed dielectric barrier discharge reactor:roles of dielectric constant and thermal conductivity of packing materials 被引量:3
10
作者 Jin LIU Xinbo ZHU +1 位作者 Xueli HU Xin TU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第2期127-136,共10页
In this article,plasma-assisted NH;synthesis directly from N;and H;over packing materials with different dielectric constants(BaTiO_(2),TiO_(2) and SiO_(2))and thermal conductivities(Be O,Al N and Al_(2)O_(2))at room ... In this article,plasma-assisted NH;synthesis directly from N;and H;over packing materials with different dielectric constants(BaTiO_(2),TiO_(2) and SiO_(2))and thermal conductivities(Be O,Al N and Al_(2)O_(2))at room temperature and atmospheric pressure is reported.The higher dielectric constant and thermal conductivity of packing material are found to be the key parameters in enhancing the NH;synthesis performance.The NH;concentration of 1344 ppm is achieved in the presence of BaTiO_(2),which is 106%higher than that of SiO_(2),at the specific input energy(SIE)of 5.4 k J·l^(-1).The presence of materials with higher dielectric constant,i.e.BaTiO_(2) and TiO_(2)in this work,would contribute to the increase of electron energy and energy injected to plasma,which is conductive to the generation of chemically active species by electron-impact reactions.Therefore,the employment of packing materials with higher dielectric constant has proved to be beneficial for NH;synthesis.Compared to that of Al_(2)O_(3),the presence of Be O and Al N yields 31.0%and 16.9%improvement in NH;concentration,respectively,at the SIE of5.4 k J·l^(-1).The results of IR imaging show that the addition of Be O decreases the surface temperature of the packed region by 20.5%to 70.3℃ and results in an extension of entropy increment compared to that of Al_(2)O_(3),at the SIE of 5.4 k J·l^(-1).The results indicate that the presence of materials with higher thermal conductivity is beneficial for NH;synthesis,which has been confirmed by the lower surface temperature and higher entropy increment of the packed region.In addition,when SIE is higher than the optimal value,further increasing SIE would lead to the decrease of energy efficiency,which would be related to the exacerbation in reverse reaction of NH;formation reactions. 展开更多
关键词 dielectric barrier discharge ammonia synthesis packing materials thermal conductivity dielectric constant
在线阅读 下载PDF
Experimental study on the parameter optimization and application of a packed-bed dielectric barrier discharge reactor in diesel particulate filter regeneration 被引量:2
11
作者 Yunxi SHI Yirui LU +4 位作者 Yixi CAI Yong HE Yin ZHOU Yi CHEN Huarong QIU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2021年第11期128-138,共11页
To compensate for the shortcomings of the thermal and catalytic regeneration of the diesel particulate filter(DPF),a self-designed packed-bed dielectric barrier discharge(DBD)reactor for DPF regeneration was developed... To compensate for the shortcomings of the thermal and catalytic regeneration of the diesel particulate filter(DPF),a self-designed packed-bed dielectric barrier discharge(DBD)reactor for DPF regeneration was developed.The DBD reactor with the main active substance of nonthermal plasma(NTP)as the target parameter was optimized by adjusting the feed gas,packing particles(material or size),and cooling water temperature.Moreover,a set of optimal working parameters(gas source,O_2;packing particles,1.2–1.4 mm ZrO_(2);and cooling water temperature,20℃)was selected to evaluate the effect of different O_(3) concentrations on DPF regeneration.The research results showed that selecting packing particles with high dielectric constant and large particles,as well as reducing the cooling water temperature,with oxygen as the feed gas,contributed to an increase in O_(3) concentration.During DPF regeneration,the following changes were observed:the power of the NTP reactor decreased to lower than 100 W,the O_(3) concentration increased from 15 g m^(-3) to 45 g m^(-3),the CO and CO_2 volume fractions of the particulate matter decomposition products increased,and the peak regeneration temperature increased to 173.4℃.The peak temperature arrival time was 60 min earlier,indicating that the regeneration rate of DPF increased with the increase in O_(3) concentration.However,the O_(3) utilization rate(the amount of carbon deposit removed per unit volume O_(3))initially increased and then decreased;when the O_(3) concentration was set to 25 g m^(-3),the highest O_(3) utilization rate was reached.The packed-bed DBD technology contributed to the increase in the concentration of NTP active substances and the regeneration efficiency of DPF.It provides a theoretical and experimental basis for high-efficiency regeneration of DPF at low temperatures(<200℃). 展开更多
关键词 dielectric barrier discharge packing particles OZONE diesel particulate filter nonthermal plasma
在线阅读 下载PDF
Estimating the grain size of microgranular material using laser-induced breakdown spectroscopy combined with machine learning algorithms
12
作者 张朝 李亚举 +9 位作者 杨光辉 曾强 李小龙 陈良文 钱东斌 孙对兄 苏茂根 杨磊 张少锋 马新文 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期129-137,共9页
Recent work has validated a new method for estimating the grain size of microgranular materials in the range of tens to hundreds of micrometers using laser-induced breakdown spectroscopy(LIBS).In this situation,a piec... Recent work has validated a new method for estimating the grain size of microgranular materials in the range of tens to hundreds of micrometers using laser-induced breakdown spectroscopy(LIBS).In this situation,a piecewise univariate model must be constructed to estimate grain size due to the complex dependence of the plasma formation environment on grain size.In the present work,we tentatively construct a unified calibration model suitable for LIBS-based estimation of those grain sizes.Specifically,two unified multivariate calibration models are constructed based on back-propagation neural network(BPNN)algorithms using feature selection strategies with and without considering prior information.By detailed analysis of the performances of the two multivariate models,it was found that a unified calibration model can be successfully constructed based on BPNN algorithms for estimating the grain size in the range of tens to hundreds of micrometers.It was also found that the model constructed with a priorguided feature selection strategy had better prediction performance.This study has practical significance in developing the technology for material analysis using LIBS,especially when the LIBS signal exhibits a complex dependence on the material parameter to be estimated. 展开更多
关键词 laser-induced breakdown spectroscopy machine learning randomly packed microgranular materials
在线阅读 下载PDF
Battery pack capacity estimation for electric vehicles based on enhanced machine learning and field data
13
作者 Qingguang Qi Wenxue Liu +3 位作者 Zhongwei Deng Jinwen Li Ziyou Song Xiaosong Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期605-618,共14页
Accurate capacity estimation is of great importance for the reliable state monitoring,timely maintenance,and second-life utilization of lithium-ion batteries.Despite numerous works on battery capacity estimation using... Accurate capacity estimation is of great importance for the reliable state monitoring,timely maintenance,and second-life utilization of lithium-ion batteries.Despite numerous works on battery capacity estimation using laboratory datasets,most of them are applied to battery cells and lack satisfactory fidelity when extended to real-world electric vehicle(EV)battery packs.The challenges intensify for large-sized EV battery packs,where unpredictable operating profiles and low-quality data acquisition hinder precise capacity estimation.To fill the gap,this study introduces a novel data-driven battery pack capacity estimation method grounded in field data.The proposed approach begins by determining labeled capacity through an innovative combination of the inverse ampere-hour integral,open circuit voltage-based,and resistance-based correction methods.Then,multiple health features are extracted from incremental capacity curves,voltage curves,equivalent circuit model parameters,and operating temperature to thoroughly characterize battery aging behavior.A feature selection procedure is performed to determine the optimal feature set based on the Pearson correlation coefficient.Moreover,a convolutional neural network and bidirectional gated recurrent unit,enhanced by an attention mechanism,are employed to estimate the battery pack capacity in real-world EV applications.Finally,the proposed method is validated with a field dataset from two EVs,covering approximately 35,000 kilometers.The results demonstrate that the proposed method exhibits better estimation performance with an error of less than 1.1%compared to existing methods.This work shows great potential for accurate large-sized EV battery pack capacity estimation based on field data,which provides significant insights into reliable labeled capacity calculation,effective features extraction,and machine learning-enabled health diagnosis. 展开更多
关键词 Electricvehicle Lithium-ion battery pack Capacity estimation Machine learning Field data
在线阅读 下载PDF
Mechanisms for the evolution of cell-to-cell variations and their impacts on fast-charging performance within a lithium-ion battery pack
14
作者 Yufang Lu Xiaoru Chen +4 位作者 Xuebing Han Dongxu Guo Yu Wang Xuning Feng Minggao Ouyang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期11-22,共12页
Cell-to-cell variations(CtCV) compromise the electrochemical performance of battery packs, yet the evolutional mechanism and quantitative impacts of CtCV on the pack's fast-charging performance remain unexplored. ... Cell-to-cell variations(CtCV) compromise the electrochemical performance of battery packs, yet the evolutional mechanism and quantitative impacts of CtCV on the pack's fast-charging performance remain unexplored. This knowledge gap is vital for the proliferation of electric vehicles. This study underlies the relationship between CtCV and charging performance by assessing the pack's charge speed, final electric quantity, and temperature consistency. Cell variations and pack status are depicted using 2D parameter diagrams, and an m PnS configured pack model is built upon a decomposed electrode cell model.Variations in three single electric parameters, i.e., capacity(Q), electric quantity(E), and internal resistance(R), and their dual interactions, i.e., E-Q and R-Q, are analyzed carefully. The results indicate that Q variations predominantly affect the final electric quantity of the pack, while R variations impact the charge speed most. With incremental variances in cell parameters, the pack's fast-charging capability first declines linearly and then deteriorates sharply as variations intensify. This research elucidates the correlations between pack charging capabilities and cell variations, providing essential insights for optimizing cell sorting and assembly, battery management design, and charging protocol development for battery packs. 展开更多
关键词 Lithium-ion battery Battery pack Cell-to-cell variation Fast charging Performance evaluation
在线阅读 下载PDF
Electric-controlled pressure relief valve for enhanced safety in liquid-cooled lithium-ion battery packs
15
作者 Yuhang Song Jidong Hou +6 位作者 Nawei Lyu Xinyuan Luo Jingxuan Ma Shuwen Chen Peihao Wu Xin Jiang Yang Jin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期98-109,I0004,共13页
The liquid-cooled battery energy sto rage system(LCBESS) has gained significant attention due to its superior thermal management capacity.However,liquid-cooled battery pack(LCBP) usually has a high sealing level above... The liquid-cooled battery energy sto rage system(LCBESS) has gained significant attention due to its superior thermal management capacity.However,liquid-cooled battery pack(LCBP) usually has a high sealing level above IP65,which can trap flammable and explosive gases from battery thermal runaway and cause explosions.This poses serious safety risks and challenges for LCBESS.In this study,we tested overcharged battery inside a commercial LCBP and found that the conventionally mechanical pressure relief valve(PRV) on the LCBP had a delayed response and low-pressure relief efficiency.A realistic 20-foot model of an energy storage cabin was constructed using the Flacs finite element simulation software.Comparative studies were conducted to evaluate the pressure relief efficiency and the influence on neighboring battery packs in case of internal explosions,considering different sizes and installation positions of the PRV.Here,a newly developed electric-controlled PRV integrated with battery fault detection is introduced,capable of starting within 50 ms of the battery safety valve opening.Furthermore,the PRV was integrated with the battery management system and changed the battery charging and discharging strategy after the PRV was opened.Experimental tests confirmed the efficacy of this method in preventing explosions.This paper addresses the safety concerns associated with LCBPs and proposes an effective solution for explosion relief. 展开更多
关键词 Pressure relief valve Liquid-cooled battery pack Explosion Flacs
在线阅读 下载PDF
Phonon Thermal Transport at Interfaces of a Graphene/Vertically Aligned Carbon Nanotubes/Hexagonal Boron Nitride Sandwiched Heterostructure
16
作者 李檬璘 Muhammad Asif Shakoori +1 位作者 王瑞鹏 李海鹏 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第1期57-62,共6页
Molecular dynamics simulation is used to calculate the interfacial thermal resistance of a graphene/carbon nanotubes/hexagonal boron nitride(Gr/CNTs/hBN)sandwiched heterostructure,in which vertically aligned carbon na... Molecular dynamics simulation is used to calculate the interfacial thermal resistance of a graphene/carbon nanotubes/hexagonal boron nitride(Gr/CNTs/hBN)sandwiched heterostructure,in which vertically aligned carbon nanotube(VACNT)arrays are covalently bonded to graphene and hexagonal boron nitride layers.We find that the interfacial thermal resistance(ITR)of the Gr/VACNT/hBN sandwiched heterostructure is one to two orders of magnitude smaller than the ITR of a Gr/hBN van der Waals heterostructure with the same plane size.It is observed that covalent bonding effectively enhances the phonon coupling between Gr and hBN layers,resulting in an increase in the overlap factor of phonon density of states between Gr and hBN,thus reducing the ITR of Gr and hBN.In addition,the chirality,size(diameter and length),and packing density of sandwich-layer VACNTs have an important influence on the ITR of the heterostructure.Under the same CNT diameter and length,the ITR of the sandwiched heterostructure with armchair-shaped VACNTs is higher than that of the sandwiched heterostructure with zigzag-shaped VACNTs due to the different chemical bonding of chiral CNTs with Gr and hBN.When the armchair-shaped CNT diameter increases or the length decreases,the ITR of the sandwiched heterostructure tends to decrease.Moreover,the increase in the VACNT packing density also leads to a continuous decrease in the ITR of the sandwiched heterostructure,attributed to the extremely high intrinsic thermal conductivity of CNTs and the increase of out-of-plane heat transfer channels.This work may be helpful for understanding the mechanism for ITR in multilayer vertical heterostructures,and provides theoretical guidance for a new strategy to regulate the interlayer thermal resistance of heterostructures by optimizing the design of sandwich layer thermal interface materials. 展开更多
关键词 SANDWICH SHAPED PACKING
在线阅读 下载PDF
A hierarchical enhanced data-driven battery pack capacity estimation framework for real-world operating conditions with fewer labeled data
17
作者 Sijia Yang Caiping Zhang +4 位作者 Haoze Chen Jinyu Wang Dinghong Chen Linjing Zhang Weige Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期417-432,共16页
Battery pack capacity estimation under real-world operating conditions is important for battery performance optimization and health management,contributing to the reliability and longevity of batterypowered systems.Ho... Battery pack capacity estimation under real-world operating conditions is important for battery performance optimization and health management,contributing to the reliability and longevity of batterypowered systems.However,complex operating conditions,coupling cell-to-cell inconsistency,and limited labeled data pose great challenges to accurate and robust battery pack capacity estimation.To address these issues,this paper proposes a hierarchical data-driven framework aimed at enhancing the training of machine learning models with fewer labeled data.Unlike traditional data-driven methods that lack interpretability,the hierarchical data-driven framework unveils the“mechanism”of the black box inside the data-driven framework by splitting the final estimation target into cell-level and pack-level intermediate targets.A generalized feature matrix is devised without requiring all cell voltages,significantly reducing the computational cost and memory resources.The generated intermediate target labels and the corresponding features are hierarchically employed to enhance the training of two machine learning models,effectively alleviating the difficulty of learning the relationship from all features due to fewer labeled data and addressing the dilemma of requiring extensive labeled data for accurate estimation.Using only 10%of degradation data,the proposed framework outperforms the state-of-the-art battery pack capacity estimation methods,achieving mean absolute percentage errors of 0.608%,0.601%,and 1.128%for three battery packs whose degradation load profiles represent real-world operating conditions.Its high accuracy,adaptability,and robustness indicate the potential in different application scenarios,which is promising for reducing laborious and expensive aging experiments at the pack level and facilitating the development of battery technology. 展开更多
关键词 Lithium-ion battery pack Capacity estimation Label generation Multi-machine learning model Real-world operating
在线阅读 下载PDF
Effect of the Particle Packing Configuration on Fixed Bed Performance
18
作者 Li Ziqi Bao Di +1 位作者 Zhou Han Tang Xiaojin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期152-160,共9页
Fixed-bed reactors are generally considered the optimal choice for numerous multi-phase catalytic reactions due to their excellent performance and stability.However,conventional fixed beds often encounter challenges r... Fixed-bed reactors are generally considered the optimal choice for numerous multi-phase catalytic reactions due to their excellent performance and stability.However,conventional fixed beds often encounter challenges related to inadequate mass transfer and a high pressure drop caused by the non-uniform void fraction distribution.To enhance the overall performance of fixed beds,the impact of different packing configurations on performance was investigated.Experimental and simulation methods were used to investigate the fluid flow and mass transfer performances of various packed beds under different flow rates.It was found that structured beds exhibited a significantly lower pressure drop per unit length than conventional packed beds.Furthermore,the packing configurations had a critical role in improving the overall performance of fixed beds.Specifically,structured packed beds,particularly the H-2 packing configuration,effectively reduced the pressure drop per unit length and improved the mass transfer efficiency.The H-2 packing configuration consisted of two parallel strips of particles in each layer,with strips arranged perpendicularly between adjacent layers,and the spacing between the strips varied from layer to layer. 展开更多
关键词 packing configurations fixed bed Computational Fluid Dynamics simulation pressure drop mass transfer
在线阅读 下载PDF
一种支持节点分割的vEPC虚拟网络功能部署模型 被引量:9
19
作者 汤红波 袁泉 +2 位作者 卢干强 王晓雷 赵宇 《电子与信息学报》 EI CSCD 北大核心 2017年第3期546-553,共8页
软件定义网络(SDN)和网络功能虚拟化(NFV)促进了网络的创新,NFV实现了虚拟网络功能(VNF)的逻辑集中部署。针对v EPC(virtualized Evolved Packed Core)网络中VNF的池组化部署问题,该文提出一种支持节点分割的VNF部署模型,该模型基于虚... 软件定义网络(SDN)和网络功能虚拟化(NFV)促进了网络的创新,NFV实现了虚拟网络功能(VNF)的逻辑集中部署。针对v EPC(virtualized Evolved Packed Core)网络中VNF的池组化部署问题,该文提出一种支持节点分割的VNF部署模型,该模型基于虚拟请求业务流量的感知,利用节点分割算法动态调整VNF与底层网络资源切片的映射关系,实现VNF的跨域组池。与传统的多功能链联合映射算法相比,该方法能够实现节点资源细粒度化管理和统筹调度,优化网络视图,减少资源碎片。在SNDlib提供的网络拓扑实例下仿真证明,该模型可以降低虚拟网络的资源开销,并提高虚拟网络的请求接收率。 展开更多
关键词 网络功能虚拟化 虚拟网络功能部署 5G EPC(Evolved packed Core) 节点分割
在线阅读 下载PDF
两种填充型双电渗泵的制作与流量控制 被引量:4
20
作者 尤慧艳 郭明 +2 位作者 张丽华 张维冰 张玉奎 《色谱》 CAS CSCD 北大核心 2007年第3期435-436,共2页
自制了同柱双电渗泵和异柱双电渗泵,考察了这两种填充型双电渗泵的泵流速及流量与驱动电压的关系,并将其与填充型单电渗泵进行了比较,说明了其优势。
关键词 填充柱(packed column) 双电渗泵(double ELECTROOSMOTIC pump) 微流(microflow)
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部