To convert the non biodegradable sodium lignin sulfonate into biodegradable substances, the sodium lignin sulfonate in the water was ozonized and the pH value, dissolved organic carbon(DOC), ultraviolet absorbency at...To convert the non biodegradable sodium lignin sulfonate into biodegradable substances, the sodium lignin sulfonate in the water was ozonized and the pH value, dissolved organic carbon(DOC), ultraviolet absorbency at λ =254 nm(UVA) and the biodegradability of the ozonation effluent were measured. The non biodegradable sodium lignin sulfonate can be partly converted into biodegradable substances by ozonation (about 38 76%). In the ozonation process, there is little DOC decrease, but much UVA decrease and obvious pH drop.展开更多
Novel Mn–Fe–Mg-and Mn–Fe–Ce-loaded alumina(Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3) were developed to catalytically ozonate reverse osmosis concentrates generated from petroleum refinery wastewaters(PRW-ROC). Hi...Novel Mn–Fe–Mg-and Mn–Fe–Ce-loaded alumina(Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3) were developed to catalytically ozonate reverse osmosis concentrates generated from petroleum refinery wastewaters(PRW-ROC). Highly dispersed 100–300-nm deposits of composite multivalent metal oxides of Mn(Mn^2+), Mn^3+,and Mn^4+, Fe(Fe^2+)and Fe^3+ and Mg(Mg^2+), or Ce(Ce^4+) were achieved on Al2O3 supports. The developed Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3 exhibited higher catalytic activity during the ozonation of PRW-ROC than Mn–Fe/Al2O3, Mn/Al2O-3, Fe/Al2O3, and Al2O3. Chemical oxygen demand removal by Mn–Fe–Mg/Al2O3-or Mn–Fe–Ce/Al2O3-catalyzed ozonation increased by 23.9% and23.2%, respectively, in comparison with single ozonation.Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3 notably promoted áOH generation and áOH-mediated oxidation. This study demonstrated the potential use of composite metal oxide-loaded Al2O3 in advanced treatment of bio-recalcitrant wastewaters.展开更多
In order to improve the ability of ozone to catalyze the degradation of phenolic pollutants in wastewater,the CuO/Al2O3 catalysts was prepared by the impregnation precipitation method and an ozone catalytic oxidation ...In order to improve the ability of ozone to catalyze the degradation of phenolic pollutants in wastewater,the CuO/Al2O3 catalysts was prepared by the impregnation precipitation method and an ozone catalytic oxidation system was constructed.The actual phenolic sewage was used as the treatment object.And the reaction conditions of the system were optimized,and the treatment effect was determined,while the non-catalytic system was used as a control group.At the same time,the influence of salt and ammonia nitrogen related water quality on the system was studied.The optimal reaction conditions for the treatment of phenolic wastewater covered:a catalyst dosage of 30 g/L,an ozone flow rate of 0.3 m3/h,a pH value of 8.80,and a reaction time of 15 minutes.Under these conditions,the phenol and COD removal rates of the system reached 98.7%and 49.4%,respectively,which were by 31.3 percentage points and 16.2 percentage points higher than that of the ozonation system alone.The salt and ammonia nitrogen in the sewage can reduce the oxidation effect of the system.When the salinity reached 10%and the ammonia nitrogen content reached 13 000 mg/L,the removal rate of phenol could be reduced by about 20%.The results of this paper have a reference value for phenol wastewater treatment engineering.展开更多
In order to improve the ozonation efficiency for the remediation of PAHs contaminated soil,the performance experiments were carried out with quartz sand artificially contaminated with phenanthrene.The byproducts of ph...In order to improve the ozonation efficiency for the remediation of PAHs contaminated soil,the performance experiments were carried out with quartz sand artificially contaminated with phenanthrene.The byproducts of phenanthrene were detected by GC-MS and the toxicity was evaluated by seed germination tests.The influence of the particle size and moisture content of quartz sand on the ozonation efficiency was investigated.In addition,two kinds of real soil was used to compare with the quartz sand.It was revealed that the phenanthrene removal rate reached 96%after 600 minutes by using the ozonation process.Three byproducts of phenanthrene,including 9,10-phenanthrenedione,(1,1’-biphenyl)-2,2’-dicarboxaldehyde,and(1,1’-biphenyl)-2,2’-dicarboxylic acid,were obtained.As proven by seed germination tests,the toxicity of the byproducts was lower than phenanthrene.The phenanthrene was removed more effectively by ozonation in the quartz sand with finer particle size.The ozonation efficiency was significantly improved by increasing the moisture content,which is assumed to be related to the alkalinity of quartz sand.展开更多
To better understand the formation of H2O2 in the ozonation of nitrobenzene and its role for the oxidation,a batch reactor of nitrobenzene ozonation was set up.The variables such as pH value,ozone dosage,and the prese...To better understand the formation of H2O2 in the ozonation of nitrobenzene and its role for the oxidation,a batch reactor of nitrobenzene ozonation was set up.The variables such as pH value,ozone dosage,and the presence of hydroxyl radical scavenger were investigated.The results showed that high accumulations of H2O2 were generally formed at low pH values and low ozone dosages.Moreover,H2O2 mainly formed after nitrobenzene was oxidized by hydroxyl radical during ozonation of the intermediates,such as p-nitrophenol,which reacted with ozone quickly in water.A small amount of additional H2O2 enhanced the nitrobenzene removal slightly.The kinetic study showed that nitrobenzene degradation fitted with pseudo-second-order kinetics well in the experiment.The kinetic constant values correlated linearly with the concentrations of H2O2 added.Thus,it is expected that the H2O2 formed in oxidation of nitrobenzene may initiate ozone decomposition to form hydroxyl radical and finally enhance the degradation of aromatic compounds to a certain extent.展开更多
The integrated high gravity-ultrasonic/ozonation/electrolysis technology was applied in the pretreatment of wastewater containing nitrobenzene. The effect ofpH value, high gravity factor, liquid flow-rate and electric...The integrated high gravity-ultrasonic/ozonation/electrolysis technology was applied in the pretreatment of wastewater containing nitrobenzene. The effect ofpH value, high gravity factor, liquid flow-rate and electric current density on removal of COD and nitrobenzene compounds was investigated. Experimental results have determined the optimal pro- cess regime involving a high gravity factor of 100, an electric current density of 20 mA/cm2, a liquid flow-rate of 100 L/h, and an initial liquid pH value of 11. After the wastewater had been treated for 180 rain, the degradation of nitrobenzene and COD reached 99% and 80%, respectively, with the biochemical coefficient (BOD/COD) equating to 0.64, and the subse- quent treatment of wastewater could be carried out by conventional biochemical means. Compared with traditional aeration- ozone contactors, a rotating packed bed with high mass transfer characteristics could be used to increase the ozonation treat- ment efficiency.展开更多
The physicochemical processes of dielectric barrier discharge (DBD) such as insitu formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulat...The physicochemical processes of dielectric barrier discharge (DBD) such as insitu formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.展开更多
This review describes the effects of ultraviolet-B (UV-B) radiation on plant growth and development, photosynthesis and photosynthetic pigments and UV-B absorbing compounds. Moreover, plant ecosystem level responses...This review describes the effects of ultraviolet-B (UV-B) radiation on plant growth and development, photosynthesis and photosynthetic pigments and UV-B absorbing compounds. Moreover, plant ecosystem level responses to elevated UV-B radiation and interactions of UV-B radiation with abiotic and biotic factors were also involved. Results collected in this review suggest that approximately two-thirds terrestrial plant species are significantly affected by increase in UV-B radiation, The majority of evidences indicate that elevated UV-B radiation is usually detrimental but there exists tremendous variability in the sensitivity of species to UV-B radiation, and sensitivity also differs among cultivars of the same species.展开更多
In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (03) regeneration) of saturated granular activated carbon (GAC) with pentachlorophe- nol (PCP) were compared. The ...In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (03) regeneration) of saturated granular activated carbon (GAC) with pentachlorophe- nol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with 03 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after 03 regeneration. 03 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cy- cles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after 03 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that 03 regeneration has a lower weight loss than DBD plasma regeneration.展开更多
Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build...Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build the neural network model by which the expected outflow CODM can be acquired under the inflow CODM condition. Results The improved self-organized learning algorithm can assign the centers into appropriate places , and the RBF network's outputs at the sample points fit the experimental data very well. Conclusion The model of ozonation /BAC system based on the RBF network am describe the relationshipamong various factors correctly, a new prouding approach tO the wate purification process is provided.展开更多
Four kinds of cryptomelane-type octahedral molecular sieve(OMS)-2-X(the X represents the molar ratio of KMnO4/MnAc2) were prepared as catalytic materials for ozone decomposition through a one-step hydrothermal reactio...Four kinds of cryptomelane-type octahedral molecular sieve(OMS)-2-X(the X represents the molar ratio of KMnO4/MnAc2) were prepared as catalytic materials for ozone decomposition through a one-step hydrothermal reaction of KMnO4 and MnAc2, by changing their molar ratios. These samples were characterized by N2 adsorption–desorption, X-ray di raction(XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM), temperature programmed reduction by H2(H2-TPR) and X-ray photoelectron spectroscopy(XPS). Among them, the OMS-2-0.7 sample showed the best O3 conversion of 92% under high relative humidity(RH) of 90% and gas hourly space velocity of 585,000 h-1. This was accordingly thought as a possible way for purifying ozone-containing waste gases under high RH atmospheres. The e ciency of ozone decomposition of the prepared OMS-2-X sample was found to be related to specific surface area, particle size, surface oxygen vacancies, and Mn3+ cation amounts. The one-step hydrothermal synthesis was shown to be a simple method to prepare the considerably active OMS-2 solids for ozone decomposition.展开更多
Nitrobenzene-containing industrial wastewater was degraded in the presence of ozone coupled with H2O2 by high gravity technology. The effect of high gravity factor, H2O2 concentration, pH value, liquid flow-rate, and ...Nitrobenzene-containing industrial wastewater was degraded in the presence of ozone coupled with H2O2 by high gravity technology. The effect of high gravity factor, H2O2 concentration, pH value, liquid flow-rate, and reaction time on the efficiency for removal of nitrobenzene was investigated. The experimental results show that the high gravity technology enhances the ozone utilization efficiency with O3/H202 showing synergistic effect. The degradation efficiency in terms of the COD removal rate and nitrobenzene removal rate reached 45.8% and 50.4%, respectively, under the following reaction conditions, viz.: a high gravity factor of 66.54, a pH value of 9, a H2O2/O3 molar ratio of 1:1, a liquid flow rate of 140 L/h, an ozone concentration of 40 rag/L, a H2O2 multiple dosing mode of 6 mL/h, and a reaction time of 4 h. Compared with the performance of conventional stirred aeration mixers, the high gravity technology could increase the COD and nitrobenzene removal rate related with the nitrobenzene-containing wastewater by 22.9% and 23.3%, respectively.展开更多
Treatment of drilling wastewater from a sulfonated drilling mud system in the Shengli Oilfield, East China, was studied. The wastewater was deeply treated by a chemical coagulationcentrifugal separation-ozone catalyti...Treatment of drilling wastewater from a sulfonated drilling mud system in the Shengli Oilfield, East China, was studied. The wastewater was deeply treated by a chemical coagulationcentrifugal separation-ozone catalytic oxidation combined process. The factors (i.e. pH value, chemical dosage, reaction time, etc.) influencing the treatment effect were investigated, and pH = 7 was determined as optimal for the coagulation; polymeric aluminum chloride (PAC) was selected as the optimal coagulant with a dosage of 18 g/L; cationic polyacrylamide (CPAM) with molecular weight of 8 million was selected as the optimal coagulant aid with an optimum dosage of 8 mg/L; and the optimal condition of catalytic ozonation was found to be a pH of 12 and an oxidation time of 40 min. The results showed that the combined treatment process was effective. The oil content and suspended solids content of the effluent reached the first class discharge standard according to China's standard GB 8978-1996 (Integrated Wastewater Discharge Standard) and the chemical oxygen demand (COD) decreased to 195 mg/L from 2.34×10^4 mg/L after coagulation process and ozone oxidation at pH = 12 for 40 min.展开更多
Dielectric barrier discharge (DBD) plasma was utilized to oxidize NO contained in the exhaust gas to NO2, ultimately improve the selective catalytic reduction of nitrogen oxides (NOx). In the one case, DBD was cre...Dielectric barrier discharge (DBD) plasma was utilized to oxidize NO contained in the exhaust gas to NO2, ultimately improve the selective catalytic reduction of nitrogen oxides (NOx). In the one case, DBD was created directly in the exhaust gas (direct application), and in the an other case, ozone produced by DBD was injected into the exhaust gas (indirect application). A comparative study between such direct and indirect applications of DBD plasma was made in terms of the NOx removal efficiency and the energy consumption. The NO2 content in the exhaust gas was changed by the voltage applied to the DBD device (for direct application) or by the amount of ozone added to the exhaust gas (for indirect application). In both cases, NO was easily oxidized to NO2, and the change in NO2 content largely affected the NOx removal performance of the catalytic reactor placed downstream, where both NO and NO2 were reduced to N2 in the presence of ammonia as the reducing agent. The experiments were primarily concerned with the effect of reaction temperature on the catalytic NOx reduction at various NO2 contents. The direct and indirect applications of DBD were found to remarkably improve the catalytic NOx reduction, especially at low temperatures.展开更多
A wastewater treatment system was established by means of pulsed dielectric barrier discharge(DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation o...A wastewater treatment system was established by means of pulsed dielectric barrier discharge(DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet(UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity;under the highest conductivity condition, the degradation rate could rise to 99%.展开更多
In this study, dielectric barrier discharge plasma and ozone(O_3) were combined to synergistically degrade trans-ferulic acid(FA), and the effect of water quality on FA degradation was studied. The results showed that...In this study, dielectric barrier discharge plasma and ozone(O_3) were combined to synergistically degrade trans-ferulic acid(FA), and the effect of water quality on FA degradation was studied. The results showed that 96.9% of FA was degraded after 40 min treatment by the plasma/O_3 process. FA degradation efficiency increased with the p H values. The presence of suspended solid and humic acid inhibited FA degradation. FA degradation efficiency increased as the water temperature increased to 30 °C. However, the further increase in water temperature was adverse for FA degradation. Effects of common inorganic ions on FA degradation were also investigated. The addition of Cl^- inhibited the FA degradation, whileCO_3^(2-) had both negative and positive influences on FA degradation.NO_3^- andSO_4^(2-) did not have significant effect on FA degradation. Fe^(3+)and Cu^(2+)benefited FA degradation through the Fenton-like and catalytic ozonation reactions.展开更多
Ground-level ozone(O_(3)) aff ects vegetation and threatens environmental health when levels exceed critical values,above which adverse eff ects are expected.Cyprus is expected to be a hotspot for O_(3)concentrations ...Ground-level ozone(O_(3)) aff ects vegetation and threatens environmental health when levels exceed critical values,above which adverse eff ects are expected.Cyprus is expected to be a hotspot for O_(3)concentrations due to its unique position in the eastern Mediterranean,receiving air masses from Europe,African,and Asian continents,and experiencing a warm Mediterranean climate.In Cyprus,the spatiotemporal features of O_(3) are poorly understood and the potential risks for forest health have not been explored.We evaluated O_(3) and nitrogen oxides(NO and NO 2)at four regional background stations at different altitudes over 2014−2016.O_(3) risks to vegetation and human health were estimated by calculating accumulated O_(3)exposure over a threshold of 40 nmol mol^(−1)(AOT40)and cumulative exposure to mixing ratios above 35 nmol mol^(−1)(SOMO35)indices.The data reveal that mean O_(3)concentrations follow a seasonal pattern,with higher levels in spring(51.8 nmol mol^(−1))and summer(53.2 nmol mol^(−1))and lower levels in autumn(46.9 nmol mol^(−1))and winter(43.3 nmol mol^(−1)).The highest mean O_(3)exposure(59.5 nmol mol^(−1)) in summer occurred at the high elevation station Mt.Troodos(1819 m a.s.l.).Increasing(decreasing)altitudinal gradients were found for O_(3)(NO x),driven by summer–winter diff erences.The diurnal patterns of O_(3) showed little variation.Only at the lowest altitude O_(3) displayed a typical O_(3) diurnal pattern,with hourly diff erences smaller than 15 nmol mol^(−1).Accumulated O_(3) exposures at all stations and in all years exceeded the European Union’s limits for the protection of vegetation,with average values of 3-month(limit:3000 nmol mol^(−1)h)and 6-month(limit:5000 nmol mol^(−1)h)AOT40 for crops and forests of 16,564 and 31,836 nmol mol^(−1)h,respectively.O_(3) exposures were considerably high for human health,with an average SOMO35 value of 7270 nmol mol^(−1) days across stations and years.The results indicate that O_(3) is a major environmental and public health issue in Cyprus,and policies must be adopted to mitigate O_(3) precursor emissions at local and regional scales.展开更多
To compensate for the shortcomings of the thermal and catalytic regeneration of the diesel particulate filter(DPF),a self-designed packed-bed dielectric barrier discharge(DBD)reactor for DPF regeneration was developed...To compensate for the shortcomings of the thermal and catalytic regeneration of the diesel particulate filter(DPF),a self-designed packed-bed dielectric barrier discharge(DBD)reactor for DPF regeneration was developed.The DBD reactor with the main active substance of nonthermal plasma(NTP)as the target parameter was optimized by adjusting the feed gas,packing particles(material or size),and cooling water temperature.Moreover,a set of optimal working parameters(gas source,O_2;packing particles,1.2–1.4 mm ZrO_(2);and cooling water temperature,20℃)was selected to evaluate the effect of different O_(3) concentrations on DPF regeneration.The research results showed that selecting packing particles with high dielectric constant and large particles,as well as reducing the cooling water temperature,with oxygen as the feed gas,contributed to an increase in O_(3) concentration.During DPF regeneration,the following changes were observed:the power of the NTP reactor decreased to lower than 100 W,the O_(3) concentration increased from 15 g m^(-3) to 45 g m^(-3),the CO and CO_2 volume fractions of the particulate matter decomposition products increased,and the peak regeneration temperature increased to 173.4℃.The peak temperature arrival time was 60 min earlier,indicating that the regeneration rate of DPF increased with the increase in O_(3) concentration.However,the O_(3) utilization rate(the amount of carbon deposit removed per unit volume O_(3))initially increased and then decreased;when the O_(3) concentration was set to 25 g m^(-3),the highest O_(3) utilization rate was reached.The packed-bed DBD technology contributed to the increase in the concentration of NTP active substances and the regeneration efficiency of DPF.It provides a theoretical and experimental basis for high-efficiency regeneration of DPF at low temperatures(<200℃).展开更多
文摘To convert the non biodegradable sodium lignin sulfonate into biodegradable substances, the sodium lignin sulfonate in the water was ozonized and the pH value, dissolved organic carbon(DOC), ultraviolet absorbency at λ =254 nm(UVA) and the biodegradability of the ozonation effluent were measured. The non biodegradable sodium lignin sulfonate can be partly converted into biodegradable substances by ozonation (about 38 76%). In the ozonation process, there is little DOC decrease, but much UVA decrease and obvious pH drop.
基金supported in part by the National Science and Technology Major Project of China (No. 2016ZX05040-003)
文摘Novel Mn–Fe–Mg-and Mn–Fe–Ce-loaded alumina(Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3) were developed to catalytically ozonate reverse osmosis concentrates generated from petroleum refinery wastewaters(PRW-ROC). Highly dispersed 100–300-nm deposits of composite multivalent metal oxides of Mn(Mn^2+), Mn^3+,and Mn^4+, Fe(Fe^2+)and Fe^3+ and Mg(Mg^2+), or Ce(Ce^4+) were achieved on Al2O3 supports. The developed Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3 exhibited higher catalytic activity during the ozonation of PRW-ROC than Mn–Fe/Al2O3, Mn/Al2O-3, Fe/Al2O3, and Al2O3. Chemical oxygen demand removal by Mn–Fe–Mg/Al2O3-or Mn–Fe–Ce/Al2O3-catalyzed ozonation increased by 23.9% and23.2%, respectively, in comparison with single ozonation.Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3 notably promoted áOH generation and áOH-mediated oxidation. This study demonstrated the potential use of composite metal oxide-loaded Al2O3 in advanced treatment of bio-recalcitrant wastewaters.
基金financially supported by the Ministry of Science and Technology of the People’s Republic of China [Grant No. 2017YFC1404605]
文摘In order to improve the ability of ozone to catalyze the degradation of phenolic pollutants in wastewater,the CuO/Al2O3 catalysts was prepared by the impregnation precipitation method and an ozone catalytic oxidation system was constructed.The actual phenolic sewage was used as the treatment object.And the reaction conditions of the system were optimized,and the treatment effect was determined,while the non-catalytic system was used as a control group.At the same time,the influence of salt and ammonia nitrogen related water quality on the system was studied.The optimal reaction conditions for the treatment of phenolic wastewater covered:a catalyst dosage of 30 g/L,an ozone flow rate of 0.3 m3/h,a pH value of 8.80,and a reaction time of 15 minutes.Under these conditions,the phenol and COD removal rates of the system reached 98.7%and 49.4%,respectively,which were by 31.3 percentage points and 16.2 percentage points higher than that of the ozonation system alone.The salt and ammonia nitrogen in the sewage can reduce the oxidation effect of the system.When the salinity reached 10%and the ammonia nitrogen content reached 13 000 mg/L,the removal rate of phenol could be reduced by about 20%.The results of this paper have a reference value for phenol wastewater treatment engineering.
基金Appreciation and acknowledgment are given to the National Natural Science Foundation of China(No.51508353 and No.21676027)the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality(IDHT20180508).
文摘In order to improve the ozonation efficiency for the remediation of PAHs contaminated soil,the performance experiments were carried out with quartz sand artificially contaminated with phenanthrene.The byproducts of phenanthrene were detected by GC-MS and the toxicity was evaluated by seed germination tests.The influence of the particle size and moisture content of quartz sand on the ozonation efficiency was investigated.In addition,two kinds of real soil was used to compare with the quartz sand.It was revealed that the phenanthrene removal rate reached 96%after 600 minutes by using the ozonation process.Three byproducts of phenanthrene,including 9,10-phenanthrenedione,(1,1’-biphenyl)-2,2’-dicarboxaldehyde,and(1,1’-biphenyl)-2,2’-dicarboxylic acid,were obtained.As proven by seed germination tests,the toxicity of the byproducts was lower than phenanthrene.The phenanthrene was removed more effectively by ozonation in the quartz sand with finer particle size.The ozonation efficiency was significantly improved by increasing the moisture content,which is assumed to be related to the alkalinity of quartz sand.
基金Supported by the National Natural Science Foundation of China(21407077)the Postdoctoral Science Foundation of Jiangsu Province(1002013C)+1 种基金the Fundamental Research Funds for the Central Universities(308201NS2012079)the Priority Academic Program Development Fund of Jiangsu Higher Education Institutions
文摘To better understand the formation of H2O2 in the ozonation of nitrobenzene and its role for the oxidation,a batch reactor of nitrobenzene ozonation was set up.The variables such as pH value,ozone dosage,and the presence of hydroxyl radical scavenger were investigated.The results showed that high accumulations of H2O2 were generally formed at low pH values and low ozone dosages.Moreover,H2O2 mainly formed after nitrobenzene was oxidized by hydroxyl radical during ozonation of the intermediates,such as p-nitrophenol,which reacted with ozone quickly in water.A small amount of additional H2O2 enhanced the nitrobenzene removal slightly.The kinetic study showed that nitrobenzene degradation fitted with pseudo-second-order kinetics well in the experiment.The kinetic constant values correlated linearly with the concentrations of H2O2 added.Thus,it is expected that the H2O2 formed in oxidation of nitrobenzene may initiate ozone decomposition to form hydroxyl radical and finally enhance the degradation of aromatic compounds to a certain extent.
基金the National Nature Science Foundation of China (No. 21206153)the Science and Science and Technology Development Program of Taiyuan Municipal Government (No. 120164053) for financial support
文摘The integrated high gravity-ultrasonic/ozonation/electrolysis technology was applied in the pretreatment of wastewater containing nitrobenzene. The effect ofpH value, high gravity factor, liquid flow-rate and electric current density on removal of COD and nitrobenzene compounds was investigated. Experimental results have determined the optimal pro- cess regime involving a high gravity factor of 100, an electric current density of 20 mA/cm2, a liquid flow-rate of 100 L/h, and an initial liquid pH value of 11. After the wastewater had been treated for 180 rain, the degradation of nitrobenzene and COD reached 99% and 80%, respectively, with the biochemical coefficient (BOD/COD) equating to 0.64, and the subse- quent treatment of wastewater could be carried out by conventional biochemical means. Compared with traditional aeration- ozone contactors, a rotating packed bed with high mass transfer characteristics could be used to increase the ozonation treat- ment efficiency.
文摘The physicochemical processes of dielectric barrier discharge (DBD) such as insitu formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.
基金supported by the National NaturalScience Foundation of China (30700085)the National Basic Re-search Program of China (2009CB421101)
文摘This review describes the effects of ultraviolet-B (UV-B) radiation on plant growth and development, photosynthesis and photosynthetic pigments and UV-B absorbing compounds. Moreover, plant ecosystem level responses to elevated UV-B radiation and interactions of UV-B radiation with abiotic and biotic factors were also involved. Results collected in this review suggest that approximately two-thirds terrestrial plant species are significantly affected by increase in UV-B radiation, The majority of evidences indicate that elevated UV-B radiation is usually detrimental but there exists tremendous variability in the sensitivity of species to UV-B radiation, and sensitivity also differs among cultivars of the same species.
基金supported by National Natural Science Foundation of China(No.21107085)National High Technology Research and Development Program of China(No.2008AA06Z308)
文摘In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (03) regeneration) of saturated granular activated carbon (GAC) with pentachlorophe- nol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with 03 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after 03 regeneration. 03 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cy- cles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after 03 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that 03 regeneration has a lower weight loss than DBD plasma regeneration.
文摘Aim The RFB (radial hats function) netal network was studied for the model indentificaiton of an ozonation/BAC system. Methods The optimal ozone's dosage and the remain time in carbon tower were analyzed to build the neural network model by which the expected outflow CODM can be acquired under the inflow CODM condition. Results The improved self-organized learning algorithm can assign the centers into appropriate places , and the RBF network's outputs at the sample points fit the experimental data very well. Conclusion The model of ozonation /BAC system based on the RBF network am describe the relationshipamong various factors correctly, a new prouding approach tO the wate purification process is provided.
基金financial support from the National Natural Science Foundation of China (No. U1862102)the Fundamental Research Funds for the Central Universities (XK1802-1, JD1819)
文摘Four kinds of cryptomelane-type octahedral molecular sieve(OMS)-2-X(the X represents the molar ratio of KMnO4/MnAc2) were prepared as catalytic materials for ozone decomposition through a one-step hydrothermal reaction of KMnO4 and MnAc2, by changing their molar ratios. These samples were characterized by N2 adsorption–desorption, X-ray di raction(XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM), temperature programmed reduction by H2(H2-TPR) and X-ray photoelectron spectroscopy(XPS). Among them, the OMS-2-0.7 sample showed the best O3 conversion of 92% under high relative humidity(RH) of 90% and gas hourly space velocity of 585,000 h-1. This was accordingly thought as a possible way for purifying ozone-containing waste gases under high RH atmospheres. The e ciency of ozone decomposition of the prepared OMS-2-X sample was found to be related to specific surface area, particle size, surface oxygen vacancies, and Mn3+ cation amounts. The one-step hydrothermal synthesis was shown to be a simple method to prepare the considerably active OMS-2 solids for ozone decomposition.
基金financially supported by the National Natural Science Foundation of China(21206153)Science and Technology Development Program Fund of Taiyuan City(120164053)
文摘Nitrobenzene-containing industrial wastewater was degraded in the presence of ozone coupled with H2O2 by high gravity technology. The effect of high gravity factor, H2O2 concentration, pH value, liquid flow-rate, and reaction time on the efficiency for removal of nitrobenzene was investigated. The experimental results show that the high gravity technology enhances the ozone utilization efficiency with O3/H202 showing synergistic effect. The degradation efficiency in terms of the COD removal rate and nitrobenzene removal rate reached 45.8% and 50.4%, respectively, under the following reaction conditions, viz.: a high gravity factor of 66.54, a pH value of 9, a H2O2/O3 molar ratio of 1:1, a liquid flow rate of 140 L/h, an ozone concentration of 40 rag/L, a H2O2 multiple dosing mode of 6 mL/h, and a reaction time of 4 h. Compared with the performance of conventional stirred aeration mixers, the high gravity technology could increase the COD and nitrobenzene removal rate related with the nitrobenzene-containing wastewater by 22.9% and 23.3%, respectively.
基金National High Technology Research and Development Program of China(No. 2013AA064301)National Natural Science Foundation of China (No. 51274210)
文摘Treatment of drilling wastewater from a sulfonated drilling mud system in the Shengli Oilfield, East China, was studied. The wastewater was deeply treated by a chemical coagulationcentrifugal separation-ozone catalytic oxidation combined process. The factors (i.e. pH value, chemical dosage, reaction time, etc.) influencing the treatment effect were investigated, and pH = 7 was determined as optimal for the coagulation; polymeric aluminum chloride (PAC) was selected as the optimal coagulant with a dosage of 18 g/L; cationic polyacrylamide (CPAM) with molecular weight of 8 million was selected as the optimal coagulant aid with an optimum dosage of 8 mg/L; and the optimal condition of catalytic ozonation was found to be a pH of 12 and an oxidation time of 40 min. The results showed that the combined treatment process was effective. The oil content and suspended solids content of the effluent reached the first class discharge standard according to China's standard GB 8978-1996 (Integrated Wastewater Discharge Standard) and the chemical oxygen demand (COD) decreased to 195 mg/L from 2.34×10^4 mg/L after coagulation process and ozone oxidation at pH = 12 for 40 min.
文摘Dielectric barrier discharge (DBD) plasma was utilized to oxidize NO contained in the exhaust gas to NO2, ultimately improve the selective catalytic reduction of nitrogen oxides (NOx). In the one case, DBD was created directly in the exhaust gas (direct application), and in the an other case, ozone produced by DBD was injected into the exhaust gas (indirect application). A comparative study between such direct and indirect applications of DBD plasma was made in terms of the NOx removal efficiency and the energy consumption. The NO2 content in the exhaust gas was changed by the voltage applied to the DBD device (for direct application) or by the amount of ozone added to the exhaust gas (for indirect application). In both cases, NO was easily oxidized to NO2, and the change in NO2 content largely affected the NOx removal performance of the catalytic reactor placed downstream, where both NO and NO2 were reduced to N2 in the presence of ammonia as the reducing agent. The experiments were primarily concerned with the effect of reaction temperature on the catalytic NOx reduction at various NO2 contents. The direct and indirect applications of DBD were found to remarkably improve the catalytic NOx reduction, especially at low temperatures.
基金supported by National Natural Science Foundation of China(No.11075041)
文摘A wastewater treatment system was established by means of pulsed dielectric barrier discharge(DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet(UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity;under the highest conductivity condition, the degradation rate could rise to 99%.
文摘In this study, dielectric barrier discharge plasma and ozone(O_3) were combined to synergistically degrade trans-ferulic acid(FA), and the effect of water quality on FA degradation was studied. The results showed that 96.9% of FA was degraded after 40 min treatment by the plasma/O_3 process. FA degradation efficiency increased with the p H values. The presence of suspended solid and humic acid inhibited FA degradation. FA degradation efficiency increased as the water temperature increased to 30 °C. However, the further increase in water temperature was adverse for FA degradation. Effects of common inorganic ions on FA degradation were also investigated. The addition of Cl^- inhibited the FA degradation, whileCO_3^(2-) had both negative and positive influences on FA degradation.NO_3^- andSO_4^(2-) did not have significant effect on FA degradation. Fe^(3+)and Cu^(2+)benefited FA degradation through the Fenton-like and catalytic ozonation reactions.
基金supported by the National Natural Science Foundation of China(NSFC)(No.4210070867)the Foreign Young Talents Fund of the National Ministry of Science and Technology,China(No.31950410547)+1 种基金The Startup Foundation for Introducing Talent of Nanjing University of Information Science&Technology(NUIST),Nanjing,China(No.003080)the Jiangsu Distinguished Professor program of the People’s Government of Jiangsu Province,China.
文摘Ground-level ozone(O_(3)) aff ects vegetation and threatens environmental health when levels exceed critical values,above which adverse eff ects are expected.Cyprus is expected to be a hotspot for O_(3)concentrations due to its unique position in the eastern Mediterranean,receiving air masses from Europe,African,and Asian continents,and experiencing a warm Mediterranean climate.In Cyprus,the spatiotemporal features of O_(3) are poorly understood and the potential risks for forest health have not been explored.We evaluated O_(3) and nitrogen oxides(NO and NO 2)at four regional background stations at different altitudes over 2014−2016.O_(3) risks to vegetation and human health were estimated by calculating accumulated O_(3)exposure over a threshold of 40 nmol mol^(−1)(AOT40)and cumulative exposure to mixing ratios above 35 nmol mol^(−1)(SOMO35)indices.The data reveal that mean O_(3)concentrations follow a seasonal pattern,with higher levels in spring(51.8 nmol mol^(−1))and summer(53.2 nmol mol^(−1))and lower levels in autumn(46.9 nmol mol^(−1))and winter(43.3 nmol mol^(−1)).The highest mean O_(3)exposure(59.5 nmol mol^(−1)) in summer occurred at the high elevation station Mt.Troodos(1819 m a.s.l.).Increasing(decreasing)altitudinal gradients were found for O_(3)(NO x),driven by summer–winter diff erences.The diurnal patterns of O_(3) showed little variation.Only at the lowest altitude O_(3) displayed a typical O_(3) diurnal pattern,with hourly diff erences smaller than 15 nmol mol^(−1).Accumulated O_(3) exposures at all stations and in all years exceeded the European Union’s limits for the protection of vegetation,with average values of 3-month(limit:3000 nmol mol^(−1)h)and 6-month(limit:5000 nmol mol^(−1)h)AOT40 for crops and forests of 16,564 and 31,836 nmol mol^(−1)h,respectively.O_(3) exposures were considerably high for human health,with an average SOMO35 value of 7270 nmol mol^(−1) days across stations and years.The results indicate that O_(3) is a major environmental and public health issue in Cyprus,and policies must be adopted to mitigate O_(3) precursor emissions at local and regional scales.
基金supported by National Natural Science Foundation of China (No. 51806085)China Postdoctoral Science Foundation (No. 2018M642175)+2 种基金Jiangsu Planned Projects for Postdoctoral Research Fund (No. 2018K101C)Open Research Subject of Key Laboratory of Automotive Measurement, Control and Safety (Xihua University) (No. QCCK2021-007)the Graduate Student Innovation Fund Project of Jiangsu Province (No. KYCX21_3354)
文摘To compensate for the shortcomings of the thermal and catalytic regeneration of the diesel particulate filter(DPF),a self-designed packed-bed dielectric barrier discharge(DBD)reactor for DPF regeneration was developed.The DBD reactor with the main active substance of nonthermal plasma(NTP)as the target parameter was optimized by adjusting the feed gas,packing particles(material or size),and cooling water temperature.Moreover,a set of optimal working parameters(gas source,O_2;packing particles,1.2–1.4 mm ZrO_(2);and cooling water temperature,20℃)was selected to evaluate the effect of different O_(3) concentrations on DPF regeneration.The research results showed that selecting packing particles with high dielectric constant and large particles,as well as reducing the cooling water temperature,with oxygen as the feed gas,contributed to an increase in O_(3) concentration.During DPF regeneration,the following changes were observed:the power of the NTP reactor decreased to lower than 100 W,the O_(3) concentration increased from 15 g m^(-3) to 45 g m^(-3),the CO and CO_2 volume fractions of the particulate matter decomposition products increased,and the peak regeneration temperature increased to 173.4℃.The peak temperature arrival time was 60 min earlier,indicating that the regeneration rate of DPF increased with the increase in O_(3) concentration.However,the O_(3) utilization rate(the amount of carbon deposit removed per unit volume O_(3))initially increased and then decreased;when the O_(3) concentration was set to 25 g m^(-3),the highest O_(3) utilization rate was reached.The packed-bed DBD technology contributed to the increase in the concentration of NTP active substances and the regeneration efficiency of DPF.It provides a theoretical and experimental basis for high-efficiency regeneration of DPF at low temperatures(<200℃).