OBJECTIVE To investigate icariside(ICS)Ⅱ protects against PC12 cel damage induced by oxygen-glucose deprivation and reoxygenation and explore its mechanism.METHODS The oxidative stress injury model was induced by oxy...OBJECTIVE To investigate icariside(ICS)Ⅱ protects against PC12 cel damage induced by oxygen-glucose deprivation and reoxygenation and explore its mechanism.METHODS The oxidative stress injury model was induced by oxygen-glucose deprivation/reoxygenation(OGD/R) 2 h/24 h in PC12 cells.N-acetyl-lcysteine(NAC),a classical anti-oxidant,was used as positive control.Pharmacodynamic experimental study groups as follows:control,control+ICS Ⅱ50 μmol·L^(-1),OGD/R,OGD/R+ICSⅡ 12.5 μmol·L^(-1),OGD/R + ICS Ⅱ 25 μmol·L^(-1),OGD/R + ICS Ⅱ50 μmol·L^(-1),and OGD/R+NAC 100 μmol·L^(-1) groups.Cell viability and lactate dehydrogenase(LDH) leakage rate were measured by MTT assay and LDH ELISA kit,respectively.Moreover,reactive oxygen species(ROS) ELISA kit was used for detection of intracellular ROS generation,Mito-SOX fluorescence staining was used for detecting production of ROS in mitochondria and mitochondrial membrane potential(MMP)was detected by rhodamine 123 dye.In addition,PC12 cells apoptosis was detected by one-step TUNEL assay.Furthermore,the expressions of nuclear factor erythroid 2-related factors(Nrf2),Keap1,HO^(-1),NQO^(-1),silent information regulator 3(SIRT3),IDH2,Bax,Bcl-2 and caspase 3 were detected by Western blotting analysis.RESULTS The results of MTT and LDH assay showed that OGD/R reduced the cell viability and improved LDH release compared with the control or ICSⅡ 50 μmol·L^(-1) alone(P<0.01).Meanwhile,OGD/R not only increased intracellular and mitochondrial ROS generation,but also elevated the fluorescence intensity of TUNEL staining,at the same time,the MMP was declined when challenged by OGD/R.Furthermore,the Western blotting results showed that OGD/R induced the increase in the expression of cytoplasm-Nrf2,Keap1,Bax and cleaved-caspase 3 level,while the decrease in the expression of nucleus-Nrf2,HO^(-1),NQO^(-1),SIRT3,IDH2 and Bcl-2(P<0.05).However,ICS Ⅱ significantly increased the viability of PC12 cells and reduced LDH leakage(P<0.01).Notably,ICS Ⅱ also suppressed ROS generation both in the intracellular and mitochondria,as well as restored MMP.It was also worthy to note that ICS Ⅱ decreased the expressions of cytoplasmNrf2,Keap1,Bax and the level of cleaved-caspase3,whereas,it increased the expressions of nucleus-Nrf2,HO^(-1),NQO^(-1),SIRT3,IDH2 and Bcl-2(P<0.05).CONCLUSION ICSⅡ reduced OGD/Rinduced oxidative damage in PC12 cells under the laboratory conditions,and its underlying mechanism may be related to the regulation of Nrf2/SIRT3 signaling pathway.展开更多
OBJECTIVE To explore the effect of icariside Ⅱ(ICS Ⅱ) on oxygen-glucose deprivation and reoxygenation(OGD/R)-induced injury in cerebral cortical neuronal cels.METHODS Primary cerebral cortical neuronal cells were de...OBJECTIVE To explore the effect of icariside Ⅱ(ICS Ⅱ) on oxygen-glucose deprivation and reoxygenation(OGD/R)-induced injury in cerebral cortical neuronal cels.METHODS Primary cerebral cortical neuronal cells were deprived of oxygen and glucose for 2 h to simulate ischemic stroke injury in vitro.The experiment was divided into 8 groups,which were control,control+ICSⅡ 25 μmol·L^(-1),OGD/R,OGD/R+ICSⅡ(6.25,12.5,25 μmol·L^(-1)),OGD/R+3-methyladenine(3-MA) and OGD/R+Rapamycin(Rap).The protective effect of ICS Ⅱ were detected by MTT assay and lactate dehydrogenase(LDH),respectively.Autophagic flux and autophagy related proteins expressions were detected by using adenovirus harboring tf-LC3 and Western blotting,respectively.RESULTS Compared with OGD/R group,the cell viability treated with ICSⅡwas elevated in a concentration-dependent manner,and the leakage rate of LDH was lowed.Moreover,ICSⅡ not only suppressed OGD/R-induced autophagic flux,but also inhibited the increase of LC3-Ⅱ/LC3-Ⅰ ratio and Beclin 1 after OGD/R insulted.CONCLUSION ICS Ⅱ exerts protective effects on OGD/R-induced cerebral cortical neuronal cells through inhibiting excessive autophagy.展开更多
目的探究阿司匹林通过调节铁死亡对氧糖剥夺/复氧(oxygen-glucose deprivation/reoxygenation,OGD/R)诱导的小鼠神经元HT22细胞损伤的作用。方法体外培养小鼠海马神经元HT22细胞,选取HT22细胞分为对照组、模型组、低剂量组、中剂量组、...目的探究阿司匹林通过调节铁死亡对氧糖剥夺/复氧(oxygen-glucose deprivation/reoxygenation,OGD/R)诱导的小鼠神经元HT22细胞损伤的作用。方法体外培养小鼠海马神经元HT22细胞,选取HT22细胞分为对照组、模型组、低剂量组、中剂量组、高剂量组(n=3),除对照组外,其余4组建立OGD/R神经元细胞损伤模型,低、中、高剂量组分别给予阿司匹林100、200、400μg/ml处理。检测各组细胞活力及炎性因子肿瘤坏死因子α(tumor necrosis factor alpha,TNF-α)、白细胞介素(interleukin,IL)1β、IL-6水平;试剂盒检测超氧化物歧化酶、过氧化氢酶、谷胱甘肽、活性氧、乳酸脱氢酶、Fe^(2+)、丙二醛水平;Western blot检测铁死亡相关蛋白溶质载体家族7成员11(solute carrier family 7 members 11,SLC7A11)、谷胱甘肽过氧化物酶4(glutathione peroxidase 4,GPX4)以及酰基辅酶A合成酶长链家族成员4(acyl-coa synthase long chain family member 4,ACSL4)水平。结果模型组细胞活力明显低于对照组,差异有统计学意义(0.49±0.07 vs 1.00±0.12,P<0.01),低、中、高剂量组细胞活力明显高于模型组,差异有统计学意义(0.72±0.10 vs 0.49±0.07,P<0.05;0.87±0.10 vs 0.49±0.07,P<0.01;0.93±0.07 vs 0.49±0.07,P<0.01)。与对照组比较,模型组TNF-α、IL-1β、IL-6、活性氧、乳酸脱氢酶、Fe^(2+)、丙二醛、ACSL4蛋白表达明显升高,超氧化物歧化酶、抗氧化酶、谷胱甘肽、SLC7A11、GPX4蛋白表达明显降低,差异有统计学意义(P<0.01)。与模型组比较,低、中、高剂量组TNF-α、IL-1β、IL-6、活性氧、乳酸脱氢酶Fe^(2+)、丙二醛、ACSL4蛋白表达明显降低,超氧化物歧化酶、抗氧化酶、谷胱甘肽、SLC7A11、GPX4蛋白表达明显升高,差异有统计学意义(P<0.05,P<0.01)。结论阿司匹林可以通过调节铁死亡,减轻OGD/R诱导的小鼠神经元HT22细胞损伤,且呈剂量依赖性。展开更多
基金National Natural Science Foundation of China(81560666)Program for Excellent Young Talents of Zunyi Medical Uiverstity(15zy-002)+1 种基金Science and Technology Innovation Talent Team of Guizhou Province(20154023)the ″Hundred″Level of High-level Innovative Talents in Guizhou Province(QKHRCPT 20165684);and Program forChangjiang Scholars and Innovative ResearchTeam in University of China(IRT一17R113).
文摘OBJECTIVE To investigate icariside(ICS)Ⅱ protects against PC12 cel damage induced by oxygen-glucose deprivation and reoxygenation and explore its mechanism.METHODS The oxidative stress injury model was induced by oxygen-glucose deprivation/reoxygenation(OGD/R) 2 h/24 h in PC12 cells.N-acetyl-lcysteine(NAC),a classical anti-oxidant,was used as positive control.Pharmacodynamic experimental study groups as follows:control,control+ICS Ⅱ50 μmol·L^(-1),OGD/R,OGD/R+ICSⅡ 12.5 μmol·L^(-1),OGD/R + ICS Ⅱ 25 μmol·L^(-1),OGD/R + ICS Ⅱ50 μmol·L^(-1),and OGD/R+NAC 100 μmol·L^(-1) groups.Cell viability and lactate dehydrogenase(LDH) leakage rate were measured by MTT assay and LDH ELISA kit,respectively.Moreover,reactive oxygen species(ROS) ELISA kit was used for detection of intracellular ROS generation,Mito-SOX fluorescence staining was used for detecting production of ROS in mitochondria and mitochondrial membrane potential(MMP)was detected by rhodamine 123 dye.In addition,PC12 cells apoptosis was detected by one-step TUNEL assay.Furthermore,the expressions of nuclear factor erythroid 2-related factors(Nrf2),Keap1,HO^(-1),NQO^(-1),silent information regulator 3(SIRT3),IDH2,Bax,Bcl-2 and caspase 3 were detected by Western blotting analysis.RESULTS The results of MTT and LDH assay showed that OGD/R reduced the cell viability and improved LDH release compared with the control or ICSⅡ 50 μmol·L^(-1) alone(P<0.01).Meanwhile,OGD/R not only increased intracellular and mitochondrial ROS generation,but also elevated the fluorescence intensity of TUNEL staining,at the same time,the MMP was declined when challenged by OGD/R.Furthermore,the Western blotting results showed that OGD/R induced the increase in the expression of cytoplasm-Nrf2,Keap1,Bax and cleaved-caspase 3 level,while the decrease in the expression of nucleus-Nrf2,HO^(-1),NQO^(-1),SIRT3,IDH2 and Bcl-2(P<0.05).However,ICS Ⅱ significantly increased the viability of PC12 cells and reduced LDH leakage(P<0.01).Notably,ICS Ⅱ also suppressed ROS generation both in the intracellular and mitochondria,as well as restored MMP.It was also worthy to note that ICS Ⅱ decreased the expressions of cytoplasmNrf2,Keap1,Bax and the level of cleaved-caspase3,whereas,it increased the expressions of nucleus-Nrf2,HO^(-1),NQO^(-1),SIRT3,IDH2 and Bcl-2(P<0.05).CONCLUSION ICSⅡ reduced OGD/Rinduced oxidative damage in PC12 cells under the laboratory conditions,and its underlying mechanism may be related to the regulation of Nrf2/SIRT3 signaling pathway.
基金National Natural Science Foundation of China(81560666)Program for Changjiang Scholarsand Innovative Research Team in University, China(IRT_17R113).
文摘OBJECTIVE To explore the effect of icariside Ⅱ(ICS Ⅱ) on oxygen-glucose deprivation and reoxygenation(OGD/R)-induced injury in cerebral cortical neuronal cels.METHODS Primary cerebral cortical neuronal cells were deprived of oxygen and glucose for 2 h to simulate ischemic stroke injury in vitro.The experiment was divided into 8 groups,which were control,control+ICSⅡ 25 μmol·L^(-1),OGD/R,OGD/R+ICSⅡ(6.25,12.5,25 μmol·L^(-1)),OGD/R+3-methyladenine(3-MA) and OGD/R+Rapamycin(Rap).The protective effect of ICS Ⅱ were detected by MTT assay and lactate dehydrogenase(LDH),respectively.Autophagic flux and autophagy related proteins expressions were detected by using adenovirus harboring tf-LC3 and Western blotting,respectively.RESULTS Compared with OGD/R group,the cell viability treated with ICSⅡwas elevated in a concentration-dependent manner,and the leakage rate of LDH was lowed.Moreover,ICSⅡ not only suppressed OGD/R-induced autophagic flux,but also inhibited the increase of LC3-Ⅱ/LC3-Ⅰ ratio and Beclin 1 after OGD/R insulted.CONCLUSION ICS Ⅱ exerts protective effects on OGD/R-induced cerebral cortical neuronal cells through inhibiting excessive autophagy.
文摘目的探究阿司匹林通过调节铁死亡对氧糖剥夺/复氧(oxygen-glucose deprivation/reoxygenation,OGD/R)诱导的小鼠神经元HT22细胞损伤的作用。方法体外培养小鼠海马神经元HT22细胞,选取HT22细胞分为对照组、模型组、低剂量组、中剂量组、高剂量组(n=3),除对照组外,其余4组建立OGD/R神经元细胞损伤模型,低、中、高剂量组分别给予阿司匹林100、200、400μg/ml处理。检测各组细胞活力及炎性因子肿瘤坏死因子α(tumor necrosis factor alpha,TNF-α)、白细胞介素(interleukin,IL)1β、IL-6水平;试剂盒检测超氧化物歧化酶、过氧化氢酶、谷胱甘肽、活性氧、乳酸脱氢酶、Fe^(2+)、丙二醛水平;Western blot检测铁死亡相关蛋白溶质载体家族7成员11(solute carrier family 7 members 11,SLC7A11)、谷胱甘肽过氧化物酶4(glutathione peroxidase 4,GPX4)以及酰基辅酶A合成酶长链家族成员4(acyl-coa synthase long chain family member 4,ACSL4)水平。结果模型组细胞活力明显低于对照组,差异有统计学意义(0.49±0.07 vs 1.00±0.12,P<0.01),低、中、高剂量组细胞活力明显高于模型组,差异有统计学意义(0.72±0.10 vs 0.49±0.07,P<0.05;0.87±0.10 vs 0.49±0.07,P<0.01;0.93±0.07 vs 0.49±0.07,P<0.01)。与对照组比较,模型组TNF-α、IL-1β、IL-6、活性氧、乳酸脱氢酶、Fe^(2+)、丙二醛、ACSL4蛋白表达明显升高,超氧化物歧化酶、抗氧化酶、谷胱甘肽、SLC7A11、GPX4蛋白表达明显降低,差异有统计学意义(P<0.01)。与模型组比较,低、中、高剂量组TNF-α、IL-1β、IL-6、活性氧、乳酸脱氢酶Fe^(2+)、丙二醛、ACSL4蛋白表达明显降低,超氧化物歧化酶、抗氧化酶、谷胱甘肽、SLC7A11、GPX4蛋白表达明显升高,差异有统计学意义(P<0.05,P<0.01)。结论阿司匹林可以通过调节铁死亡,减轻OGD/R诱导的小鼠神经元HT22细胞损伤,且呈剂量依赖性。