Catalytic oxidation desulfurization(CODS)technology has shown great promise for diesel desulfurization by virtue of its low cost,mild reaction conditions,and superior desulfurization performance.Herein,a series of FeM...Catalytic oxidation desulfurization(CODS)technology has shown great promise for diesel desulfurization by virtue of its low cost,mild reaction conditions,and superior desulfurization performance.Herein,a series of FeMoO_(x)/LaTiO_(y)-z samples with diverse Fe/Mo ratios were prepared via a facile citric acid-assisted method.The impact of Fe incorporation on the dispersion and surface elemental states of Mo species,as well as oxygen species content of the synthesized FeMoO_(x)/LaTiO_(y)-z catalysts were systematically characterized using TEM,BET,UV-vis DRS,XPS,XANES,and reaction kinetics,and their CODS performances were examined for 4,6-DMDBT removal.Experimental results demonstrated that Fe/Mo ratio significantly affected the Ti−O bond strength,surface dispersion and electronic structure of Mo O_(2)species on FeMoO_(x)/LaTiO_(y)-z catalysts.FeMoO_(x)/LaTiO_(y)-2 catalyst showed outstanding cycling durability and the best CODS performance with almost 100%removal of 4,6-DMDBT from model oil within 75 min due to its proper MoO3 dispersion,optimal redox property,and the most oxygen vacancy concentration.Nevertheless,further enhancing Fe content led to the increased dispersion of Mo species,while the decrease active Mo species as well as the increase of steric effect for 4,6-DMDBT accessing to the catalytic reactive sites considerably increase the apparent activation energy of FeMoO_(x)/LaTiO_(y)-z(z>2)catalysts during the CODS process,thereby seriously suppressing their CODS performances.Moreover,Radical trapping experiments reveal that the·,generated by the activation of O_(2)at the active sites,catalytic oxidized 4,6-DMDBT to the product of 4,6-DMDBTO_(2),thereby enabling both deep desulfurization and recovery of high-value 4,6-DMDBTO_(2).These findings offer an alternative strategy to achieve ultra deep desulfurization as well as separate and recover high economic value sulfone substances from diesel.展开更多
The chemical composition of seawater affects the desulfurization of chalcopyrite in flotation.In this study,desulfurization experiments of chalcopyrite were conducted in both deionized(DI)water and seawater.The result...The chemical composition of seawater affects the desulfurization of chalcopyrite in flotation.In this study,desulfurization experiments of chalcopyrite were conducted in both deionized(DI)water and seawater.The results showed that,the copper grade of the concentrate obtained from seawater flotation decreased to 24.30%,compared to 24.60%in DI water.Concurrently,the recovery of chalcopyrite decreased from 51.39%to 38.67%,while the selectivity index(SI)also had a reduction from 2.006 to 1.798.The incorporation of ethylene diamine tetraacetic acid(EDTA),sodium silicate(SS),and sodium hexametaphosphate(SHMP)yielded an enhancement in the SI value,elevating it from 1.798 to 1.897,2.250 and 2.153,separately.It is particularly noteworthy that an excess of EDTA resulted in a SI value of merely 1.831.The mechanism of action was elucidated through analysis of surface charge measurements,X-ray photoelectron spectroscopy(XPS),Fourier transform infrared spectroscopy(FT-IR),extended Derjaguin-Landau Verwey-Overbeek(E-DLVO)theory,and density functional theory(DFT)calculations.展开更多
Several methods of deep desulfurization in alumina production process were studied, and the costs of these methods were compared. It is found that most of the S2- in sodium aluminate solution can be removed by adding ...Several methods of deep desulfurization in alumina production process were studied, and the costs of these methods were compared. It is found that most of the S2- in sodium aluminate solution can be removed by adding sodium nitrate or hydrogen peroxide in digestion process, and in this way the effect of S2- on alumina product quality is eliminated. However, the removal efficiency of 2?32OS in sodium aluminate solution is very low by this method. Both S2- and 2?32OS in sodium aluminate solution can be removed completely by wet oxidation method in digestion process. The cost of desulfurization by wet oxidation is lower than by adding sodium nitrate or hydrogen peroxide. The results of this research reveal that wet oxidation is an economical and feasible method for the removal of sulfur in alumina production process to improve alumina quality, and provide valuable guidelines for alumina production by high-sulfur bauxite.展开更多
Fuel desulfurization is an appealing topic for the chemical industry since severe environmental regulations regarding SO_2 emissions have been legislated in many countries. In order to reduce the amount of sulfur-cont...Fuel desulfurization is an appealing topic for the chemical industry since severe environmental regulations regarding SO_2 emissions have been legislated in many countries. In order to reduce the amount of sulfur-containing compounds in fuels,responsible for high SO_x emission levels,a green chemistry approach is compulsory. In this paper,vanadium salen and salophen complexes were used in the oxidation of a model aromatic sulfide,such as dibenzothiophene( DBT),in the presence of H_2O_2 as green oxidant. The oxidative process was successfully coupled with the extraction of the oxidized compounds by ionic liquids. The system resulted highly selective for sulfide oxidation,showing poor reactivity toward the oxidation of alkenes and allowing a significant reduction of S content in a model benzine. To note,the use of microwave in place of standard heating allowed to obtain 98% of DBT oxidation and almost complete sulfur extraction in the model fuel in 1000 s. For these reasons,this system was considered an easy,rapid and clean process to achieve fuel desulfurization.展开更多
By orthodox experiment, the main influence factors of desulfurization by sulfolobas of pH value, temperature, coal slurry concentration and coal granularity are studied in detail and the optimal experimental condition...By orthodox experiment, the main influence factors of desulfurization by sulfolobas of pH value, temperature, coal slurry concentration and coal granularity are studied in detail and the optimal experimental conditions were also obtained. The experimental results demonstrate that sulfolobas being kind of linking-heat, acidophilic and self-supported bacterium with double characters can effectively remove inorganic and organic sulfur in coal. The superlatively desulfurization rate is up to 48.57% total sulfur and 41.71% inorganic sulfur within 10 d and its desulfurization rate can be greatly affected by the four factors above mentioned. Therefore, the optimum conditions of desulfurization are obtained by comprehensive experiment and they are as following: pH value 3, temperature 70℃, coal slurry concentration 10% and coal granularity 150 μm, respectively. Moreover, the repetition experimental results confirm that the desulfurization by sulfolobas is steady.展开更多
The massive accumulation of flue gas desulfurization(FGD)gypsum produced in the wet limestone-gypsum flue gas desulfurization process not only encroaches on lands but also causes serious environmental pollution.The pr...The massive accumulation of flue gas desulfurization(FGD)gypsum produced in the wet limestone-gypsum flue gas desulfurization process not only encroaches on lands but also causes serious environmental pollution.The preparation ofα-hemihydrate gypsum(α-HH)is an important way to achieve high-value utilization of FGD gypsum.Although the glycerol-water solution approach can be used to produceα-HH from FGD gypsum under mild conditions,the transition is kinetically unfavorable in the mixed solution.Here,an easy pretreatment was used to activate FGD gypsum by calcination and hydration to readily complete the transition.The pretreatment deteriorated the crystallinity of FGD gypsum and caused it to form small irregular flaky crystals,which dramatically increased the specific surface area.Additionally,most of the organics adsorbed onto FGD gypsum surfaces were removed after pretreatment.The poor crystallinity,increased specific surface area,and elimination of organics adsorbed onto crystal surfaces effectively improved the conversion activity of FGD gypsum,thereby promoting dihydrate gypsum(DH)dissolution andα-HH nucleation.Overall,the phase transition of FGD gypsum toα-HH is facilitated.展开更多
Desulfurization experiments of CuO, γ-Al2O3 and CuO/γ-Al2O3 were made in simulated flue gas by means of thermogravimetric analysis. It is found that reaction activities of CuO supported on γ-Al2O3 could be highly i...Desulfurization experiments of CuO, γ-Al2O3 and CuO/γ-Al2O3 were made in simulated flue gas by means of thermogravimetric analysis. It is found that reaction activities of CuO supported on γ-Al2O3 could be highly improved. Desulfurization kinetics of CuO/γ-Al2O3 was studied in the temperature range of 250 °C-400 °C and SO2 concentration of 0.1%-0.9%. The experimental data were tested and compared with kinetics models of volume reaction model(VRM), grain size model(GSM), random pore model(RPM) and pore-blocking model(PBM). Correlation analysis shows that VRM and RPM models do not fit experimental data well. GSM contradicts with the changes in the physical and chemical properties of Cu O/γ-Al2O3 as the desulfurization proceeds. It is found that PBM is consistent with the change of pore structure of CuO/γ-Al2O3 sorbent during desulfurization process and predicts the conversion-time curves of the sorbent well. Meanwhile, kinetics parameters are obtained and discussed.展开更多
Recently, organosulfur removal from liquid petroleum fuels is very significant aspect of environment protecting and fuel cell requests. Therefore, improved approaches to remove sulfur are still essential. In the prese...Recently, organosulfur removal from liquid petroleum fuels is very significant aspect of environment protecting and fuel cell requests. Therefore, improved approaches to remove sulfur are still essential. In the present work, a simple catalytic oxidative desulfurization (CODS) system for Iraqi gasoil fraction has been successfully developed using CuO-ZnO nanocomposites as catalysts, and H 2O 2 as oxidant under microwave irradiation. The main reaction parameters influencing sulfur conversion including microwave power, irradiation time, catalyst dosage and H 2O 2 to gasoil volume ratio have been investigated. The CuO-ZnO nanocomposites was synthesized with different weight ratios and characterized by XRD, FE-SEM, AFM and BET surface area methods. The results reveal that, high sulfur conversion (93%) has been achieved under suitable conditions of microwave CODS as follows: microwave power of 540 W, irradiation time of 15 min, catalyst dosage of 8 g/L (0.4 g), and H 2O 2 ∶gasoil volume ratio of 0.3. The catalyst reusability shows that the synthesized catalyst can be reused five times without an important loss in its activity.展开更多
基金supported by the Natural Science Foundation of Guangdong Province(2024A1515010908,2025A1515011103)Opening Project of Hubei Key Laboratory of Plasma Chemistry and Advanced Materials(2024P11)+2 种基金Postdoctoral Fellowship Program of CPSF(GZC20233104)National Natural Science Foundation of China(22202087)Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing&Finishing(STRZ202418)。
文摘Catalytic oxidation desulfurization(CODS)technology has shown great promise for diesel desulfurization by virtue of its low cost,mild reaction conditions,and superior desulfurization performance.Herein,a series of FeMoO_(x)/LaTiO_(y)-z samples with diverse Fe/Mo ratios were prepared via a facile citric acid-assisted method.The impact of Fe incorporation on the dispersion and surface elemental states of Mo species,as well as oxygen species content of the synthesized FeMoO_(x)/LaTiO_(y)-z catalysts were systematically characterized using TEM,BET,UV-vis DRS,XPS,XANES,and reaction kinetics,and their CODS performances were examined for 4,6-DMDBT removal.Experimental results demonstrated that Fe/Mo ratio significantly affected the Ti−O bond strength,surface dispersion and electronic structure of Mo O_(2)species on FeMoO_(x)/LaTiO_(y)-z catalysts.FeMoO_(x)/LaTiO_(y)-2 catalyst showed outstanding cycling durability and the best CODS performance with almost 100%removal of 4,6-DMDBT from model oil within 75 min due to its proper MoO3 dispersion,optimal redox property,and the most oxygen vacancy concentration.Nevertheless,further enhancing Fe content led to the increased dispersion of Mo species,while the decrease active Mo species as well as the increase of steric effect for 4,6-DMDBT accessing to the catalytic reactive sites considerably increase the apparent activation energy of FeMoO_(x)/LaTiO_(y)-z(z>2)catalysts during the CODS process,thereby seriously suppressing their CODS performances.Moreover,Radical trapping experiments reveal that the·,generated by the activation of O_(2)at the active sites,catalytic oxidized 4,6-DMDBT to the product of 4,6-DMDBTO_(2),thereby enabling both deep desulfurization and recovery of high-value 4,6-DMDBTO_(2).These findings offer an alternative strategy to achieve ultra deep desulfurization as well as separate and recover high economic value sulfone substances from diesel.
基金Project(52174239)supported by the National Natural Science Foundation of ChinaProject(2021YFC2902400)supported by the National Key R&D Program of China。
文摘The chemical composition of seawater affects the desulfurization of chalcopyrite in flotation.In this study,desulfurization experiments of chalcopyrite were conducted in both deionized(DI)water and seawater.The results showed that,the copper grade of the concentrate obtained from seawater flotation decreased to 24.30%,compared to 24.60%in DI water.Concurrently,the recovery of chalcopyrite decreased from 51.39%to 38.67%,while the selectivity index(SI)also had a reduction from 2.006 to 1.798.The incorporation of ethylene diamine tetraacetic acid(EDTA),sodium silicate(SS),and sodium hexametaphosphate(SHMP)yielded an enhancement in the SI value,elevating it from 1.798 to 1.897,2.250 and 2.153,separately.It is particularly noteworthy that an excess of EDTA resulted in a SI value of merely 1.831.The mechanism of action was elucidated through analysis of surface charge measurements,X-ray photoelectron spectroscopy(XPS),Fourier transform infrared spectroscopy(FT-IR),extended Derjaguin-Landau Verwey-Overbeek(E-DLVO)theory,and density functional theory(DFT)calculations.
基金Project(51404121)supported by the National Natural Science Foundation of ChinaProject(KKSY201452041)supported by Yunnan Provincal Personnel Training Funds for Kunming University of Science and Technology,China
文摘Several methods of deep desulfurization in alumina production process were studied, and the costs of these methods were compared. It is found that most of the S2- in sodium aluminate solution can be removed by adding sodium nitrate or hydrogen peroxide in digestion process, and in this way the effect of S2- on alumina product quality is eliminated. However, the removal efficiency of 2?32OS in sodium aluminate solution is very low by this method. Both S2- and 2?32OS in sodium aluminate solution can be removed completely by wet oxidation method in digestion process. The cost of desulfurization by wet oxidation is lower than by adding sodium nitrate or hydrogen peroxide. The results of this research reveal that wet oxidation is an economical and feasible method for the removal of sulfur in alumina production process to improve alumina quality, and provide valuable guidelines for alumina production by high-sulfur bauxite.
基金The project was supported by the University of Rome“Tor Vergata”,SUSCARE project.
文摘Fuel desulfurization is an appealing topic for the chemical industry since severe environmental regulations regarding SO_2 emissions have been legislated in many countries. In order to reduce the amount of sulfur-containing compounds in fuels,responsible for high SO_x emission levels,a green chemistry approach is compulsory. In this paper,vanadium salen and salophen complexes were used in the oxidation of a model aromatic sulfide,such as dibenzothiophene( DBT),in the presence of H_2O_2 as green oxidant. The oxidative process was successfully coupled with the extraction of the oxidized compounds by ionic liquids. The system resulted highly selective for sulfide oxidation,showing poor reactivity toward the oxidation of alkenes and allowing a significant reduction of S content in a model benzine. To note,the use of microwave in place of standard heating allowed to obtain 98% of DBT oxidation and almost complete sulfur extraction in the model fuel in 1000 s. For these reasons,this system was considered an easy,rapid and clean process to achieve fuel desulfurization.
文摘By orthodox experiment, the main influence factors of desulfurization by sulfolobas of pH value, temperature, coal slurry concentration and coal granularity are studied in detail and the optimal experimental conditions were also obtained. The experimental results demonstrate that sulfolobas being kind of linking-heat, acidophilic and self-supported bacterium with double characters can effectively remove inorganic and organic sulfur in coal. The superlatively desulfurization rate is up to 48.57% total sulfur and 41.71% inorganic sulfur within 10 d and its desulfurization rate can be greatly affected by the four factors above mentioned. Therefore, the optimum conditions of desulfurization are obtained by comprehensive experiment and they are as following: pH value 3, temperature 70℃, coal slurry concentration 10% and coal granularity 150 μm, respectively. Moreover, the repetition experimental results confirm that the desulfurization by sulfolobas is steady.
基金Projects(51904104,51974117,51804114)supported by the National Natural Science Foundation of ChinaProjects(2018YFC1901601,2018YFC1901602,2018YFC1901605)supported by the National Key Scientific Research Project of China+1 种基金Project(2015CX005)supported by the Innovation Driven Plan of Central South University,ChinaProject(18B226)supported by the Excellent Youth Project of Hunan Education Department,China
文摘The massive accumulation of flue gas desulfurization(FGD)gypsum produced in the wet limestone-gypsum flue gas desulfurization process not only encroaches on lands but also causes serious environmental pollution.The preparation ofα-hemihydrate gypsum(α-HH)is an important way to achieve high-value utilization of FGD gypsum.Although the glycerol-water solution approach can be used to produceα-HH from FGD gypsum under mild conditions,the transition is kinetically unfavorable in the mixed solution.Here,an easy pretreatment was used to activate FGD gypsum by calcination and hydration to readily complete the transition.The pretreatment deteriorated the crystallinity of FGD gypsum and caused it to form small irregular flaky crystals,which dramatically increased the specific surface area.Additionally,most of the organics adsorbed onto FGD gypsum surfaces were removed after pretreatment.The poor crystallinity,increased specific surface area,and elimination of organics adsorbed onto crystal surfaces effectively improved the conversion activity of FGD gypsum,thereby promoting dihydrate gypsum(DH)dissolution andα-HH nucleation.Overall,the phase transition of FGD gypsum toα-HH is facilitated.
基金Projects(51264023,51364020,U1202271)supported by the National Natural Science Foundation of ChinaProject(IRT1250)supported by the Program for Innovative Research Team in University of Ministry of Education of ChinaProject(2014HA003)supported by the Yunnan Province Science and Technology Talents Program,China
文摘Desulfurization experiments of CuO, γ-Al2O3 and CuO/γ-Al2O3 were made in simulated flue gas by means of thermogravimetric analysis. It is found that reaction activities of CuO supported on γ-Al2O3 could be highly improved. Desulfurization kinetics of CuO/γ-Al2O3 was studied in the temperature range of 250 °C-400 °C and SO2 concentration of 0.1%-0.9%. The experimental data were tested and compared with kinetics models of volume reaction model(VRM), grain size model(GSM), random pore model(RPM) and pore-blocking model(PBM). Correlation analysis shows that VRM and RPM models do not fit experimental data well. GSM contradicts with the changes in the physical and chemical properties of Cu O/γ-Al2O3 as the desulfurization proceeds. It is found that PBM is consistent with the change of pore structure of CuO/γ-Al2O3 sorbent during desulfurization process and predicts the conversion-time curves of the sorbent well. Meanwhile, kinetics parameters are obtained and discussed.
文摘Recently, organosulfur removal from liquid petroleum fuels is very significant aspect of environment protecting and fuel cell requests. Therefore, improved approaches to remove sulfur are still essential. In the present work, a simple catalytic oxidative desulfurization (CODS) system for Iraqi gasoil fraction has been successfully developed using CuO-ZnO nanocomposites as catalysts, and H 2O 2 as oxidant under microwave irradiation. The main reaction parameters influencing sulfur conversion including microwave power, irradiation time, catalyst dosage and H 2O 2 to gasoil volume ratio have been investigated. The CuO-ZnO nanocomposites was synthesized with different weight ratios and characterized by XRD, FE-SEM, AFM and BET surface area methods. The results reveal that, high sulfur conversion (93%) has been achieved under suitable conditions of microwave CODS as follows: microwave power of 540 W, irradiation time of 15 min, catalyst dosage of 8 g/L (0.4 g), and H 2O 2 ∶gasoil volume ratio of 0.3. The catalyst reusability shows that the synthesized catalyst can be reused five times without an important loss in its activity.