The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the...The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the output force.A discontinuous projection based adaptive robust controller (ARC) was constructed to achieve high-accuracy output force trajectory tracking for the system.In ARC,on-line parameter adaptation method was adopted to reduce the extent of parametric uncertainties due to the variation of friction parameters,and sliding mode control method was utilized to attenuate the effects of parameter estimation errors,unmodelled dynamics and disturbance.Furthermore,output stiffness maximization/minimization was introduced to fulfill the requirement of many robotic applications.Extensive experimental results were presented to illustrate the effectiveness and the achievable performance of the proposed scheme.For tracking a 0.5 Hz sinusoidal trajectory,maximum tracking error is 4.1 N and average tracking error is 2.2 N.Meanwhile,the output stiffness can be made and maintained near its maximum/minimum.展开更多
A computationally efficient soft-output detector with lattice-reduction (LR) for the multiple-input multiple-output (MIMO) systems is proposed. In the proposed scheme, the sorted QR de- composition is applied on t...A computationally efficient soft-output detector with lattice-reduction (LR) for the multiple-input multiple-output (MIMO) systems is proposed. In the proposed scheme, the sorted QR de- composition is applied on the lattice-reduced equivalent channel to obtain the tree structure. With the aid of the boundary control, the stack algorithm searches a small part of the whole search tree to generate a handful of candidate lists in the reduced lattice. The proposed soft-output algorithm achieves near-optimal perfor- mance in a coded MIMO system and the associated computational complexity is substantially lower than that of previously proposed methods.展开更多
The H∞ output feedback control problem for uncertain discrete-time switched systems is reasearclled. A new characterization of stability and H∞ performance for the switched system under arbitrary switching is obtain...The H∞ output feedback control problem for uncertain discrete-time switched systems is reasearclled. A new characterization of stability and H∞ performance for the switched system under arbitrary switching is obtained by using switched Lyapunov function. Then, based on the characterization, a linear matrix inequality (LMI) approach is developed to design a switched output feedback controller which guarantees the stability and H∞ performance of the closed-loop system. A numerical example is presented to demonstrate the application of the proposed method.展开更多
Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to ...Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to be an additive combination of a linear regulator part and a nonlinear feedback part. The linear regulator part solves the regulation problem independently which produces a quick output response but large oscillations. The nonlinear feedback part with well-tuned parameters is introduced to improve the transient performance by smoothing the oscillatory convergence. It is shown that the introduction of the nonlinear feedback part does not change the solvability conditions of the linear discrete-time output regulation problem. The effectiveness of transient improvement is illustrated by a numeric example.展开更多
This paper expresses the efficient outputs of decisionmaking unit(DMU) as the sum of "average outputs" forecasted by a GM(1,N) model and "increased outputs" which reflect the difficulty to realize efficient ou...This paper expresses the efficient outputs of decisionmaking unit(DMU) as the sum of "average outputs" forecasted by a GM(1,N) model and "increased outputs" which reflect the difficulty to realize efficient outputs.The increased outputs are solved by linear programming using data envelopment analysis efficiency theories,wherein a new sample is introduced whose inputs are equal to the budget in the issue No.n + 1 and outputs are forecasted by the GM(1,N) model.The shortcoming in the existing methods that the forecasted efficient outputs may be less than the possible actual outputs according to developing trends of input-output rate in the periods of pre-n is overcome.The new prediction method provides decision-makers with more decisionmaking information,and the initial conditions are easy to be given.展开更多
The problem of the quantized dynamic output feedback controller design for networked control systems is mainly discussed. By using the quantized information of the system measurement output and the control input, a no...The problem of the quantized dynamic output feedback controller design for networked control systems is mainly discussed. By using the quantized information of the system measurement output and the control input, a novel networked control system model is described. This model includes many networkinduced features, such as multi-rate sampled-data, quantized signal, time-varying delay and packet dropout. By constructing suitable Lyapunov-Krasovskii functional, a less conservative stabilization criterion is established in terms of linear matrix inequalities. The quantized control strategy involves the updating values of the quantizer parameters μi(i = 1, 2)(μi take on countable sets of values which dependent on the information of the system measurement outputs and the control inputs). Furthermore, a numerical example is given to illustrate the effectiveness of the proposed method.展开更多
An adaptive output feedback control was proposed to deal with a class of nonholonomic systems in chained form with strong nonlinear disturbances and drift terms. The objective was to design adaptive nonlinear output f...An adaptive output feedback control was proposed to deal with a class of nonholonomic systems in chained form with strong nonlinear disturbances and drift terms. The objective was to design adaptive nonlinear output feedback laws such that the closed-loop systems were globally asymptotically stable, while the estimated parameters remained bounded. The proposed systematic strategy combined input-state-scaling with backstepping technique. The adaptive output feedback controller was designed for a general case of uncertain chained system. Furthermore, one special case was considered. Simulation results demonstrate the effectiveness of the proposed controllers.展开更多
This paper studies the fixed-time output-feedback control for a class of linear systems subject to matched uncertainties.To estimate the uncertainties and system states,we design a composite observer which consists of...This paper studies the fixed-time output-feedback control for a class of linear systems subject to matched uncertainties.To estimate the uncertainties and system states,we design a composite observer which consists of a high-order sliding mode observer and a Luenberger observer.Then,a robust output-feedback controller with fixed-time convergence guarantee is constructed.Rigorous theoretical proof shows that with the proposed controller,the system states can converge to zero in fixed-time free of the initial conditions.Finally,simulation comparison with existing algorithms is given.Simulation results verify the effectiveness of the proposed controller in terms of its fixed-time convergence and perfect disturbance rejection.展开更多
Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-...Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-scale decomposition of the area of thin cloud cover on remote sensing images. Through enhancing coefficients of high frequency and suppressing coefficients of low frequency, the thin cloud is removed. For thick cloud cover, if the areas of thick cloud cover on multi-source or multi-temporal remote sensing images do not overlap, the multi-output support vector regression learning method is used to remove this kind of thick clouds. If the thick cloud cover areas overlap, by using the multi-output learning of the surrounding areas to predict the surface features of the overlapped thick cloud cover areas, this kind of thick cloud is removed. Experimental results show that the proposed cloud removal method can effectively solve the problems of the cloud overlapping and radiation difference among multi-source images. The cloud removal image is clear and smooth.展开更多
Considering the modeling errors of on-board self-tuning model in the fault diagnosis of aero-engine, a new mechanism for compensating the model outputs is proposed. A discrete series predictor based on multi-outputs l...Considering the modeling errors of on-board self-tuning model in the fault diagnosis of aero-engine, a new mechanism for compensating the model outputs is proposed. A discrete series predictor based on multi-outputs least square support vector regression (LSSVR) is applied to the compensation of on-board self-tuning model of aero-engine, and particle swarm optimization (PSO) is used to the kernels selection of multi-outputs LSSVR. The method need not reconstruct the model of aero-engine because of the differences in the individuals of the same type engines and engine degradation after use. The concrete steps for the application of the method are given, and the simulation results show the effectiveness of the algorithm.展开更多
An adaptive neural network output-feedback regulation approach is proposed for a class of multi-input-multi-output nonlinear time-varying delayed systems.Both the designed observer and controller are free from time de...An adaptive neural network output-feedback regulation approach is proposed for a class of multi-input-multi-output nonlinear time-varying delayed systems.Both the designed observer and controller are free from time delays.Different from the existing results,this paper need not the assumption that the upper bounding functions of time-delay terms are known,and only a neural network is employed to compensate for all the upper bounding functions of time-delay terms,so the designed controller procedure is more simplified.In addition,the resulting closed-loop system is proved to be semi-globally ultimately uniformly bounded,and the output regulation error converges to a small residual set around the origin.Two simulation examples are provided to verify the effectiveness of control scheme.展开更多
The global robust output regulation problem of the singular nonlinear system is investigated. Motivated by the input-output linearization of the normal affine nonlinear system, a global diffeomorphism map is designed ...The global robust output regulation problem of the singular nonlinear system is investigated. Motivated by the input-output linearization of the normal affine nonlinear system, a global diffeomorphism map is designed under the assumption that the singular nonlinear system has a strong relative degree. The global diffeomorphism map transfers the singular nonlinear system into a new singular nonlinear system with a special structure. Attaching an internal model to the new singular nonlinear system yields an augmented singular nonlinear system and the global robust stabilization solution of the augmented system implies the global robust output regulation solution of the original singular nonlinear system. Then the global stabilization problem is solved by some appropriate assumptions and the solvability conditions of the global robust output regulation problem are established. Finally, a simulation example is given to illustrate the design approach.展开更多
In order to investigate the impact of channel model parameters on the channel capacity of a multipleinput multiple-output (MIMO) system, a novel method is proposed to explore the channel capacity under Rayleigh fiat...In order to investigate the impact of channel model parameters on the channel capacity of a multipleinput multiple-output (MIMO) system, a novel method is proposed to explore the channel capacity under Rayleigh fiat fading with correlated transmit and receive antennas. The optimal transmitting direction which can achieve maximum channel capacity is derived using random matrices theory. In addition, the closed-form expression for the channel capacity of MIMO systems is given by utilizing the properties of Wishart distribution when SNR is high. Computer simulation results show that the channel capacity is maximized when the antenna spacing increases to a certain point, and furthermore, the larger the scattering angle is, the more quickly the channel capacity converges to its maximum. At high SNR (〉12 dB), the estimation of capacity is close to its true wlue. And, when the same array configuration is adopted both at the transmitter and the receiver, the UCA yields higher channel capacity than ULA.展开更多
Composite nonlinear feedback (CNF) control techniquefor tracking control problems is extended to the output regulationproblem of singular linear systems with input saturation. A statefeedback CNF control law and an ...Composite nonlinear feedback (CNF) control techniquefor tracking control problems is extended to the output regulationproblem of singular linear systems with input saturation. A statefeedback CNF control law and an output feedback CNF controllaw are constructed respectively for the output regulation problemof singular linear systems with input saturation. It is shown thatthe output regulation problem by CNF control is solvable underthe same solvability conditions of the output regulation problemby linear control. However, with the virtue of the CNF control, thetransient performance of the closed-loop system can be improvedby carefully designing the linear part and the nonlinear part of theCNF control law. The design procedure and the improvement ofthe transient performance of the closed-loop system are illustratedwith a numerical simulation.展开更多
A novel decentralized indirect adaptive output feedback fuzzy controller is developed for a class of large-scale uncertain nonlinear systems using error filtering.By the properly filtering of the observation error dyn...A novel decentralized indirect adaptive output feedback fuzzy controller is developed for a class of large-scale uncertain nonlinear systems using error filtering.By the properly filtering of the observation error dynamics,the strictly positive-real condition is guaranteed to hold such that the proposed output feedback and adaptation mechanisms are practicable in practice owing to the fact that its implementation does not require the observation error vector itself any more,which corrects the impracticable schemes in the previous literature involved.The presented control algorithm can ensure that all the signals of the closed-loop large-scale system keep uniformly ultimately bounded and that the tracking error converges to zero asymptotically.The decentralized output feedback fuzzy controller can be applied to address the longitudinal control problem of a string of vehicles within an automated highway system(AHS) and the effectiveness of the design procedure is supported by simulation results.展开更多
This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem wit...This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem with a prospected property can be transformed to a robust stabilization problem with a new output constraint.Then,by constructing the speed function and adopting barrier Lyapunov function technique,the dynamic feedback controller can be designed not only to drive error output of the closed-loop system entering into a prescribed performance bound within a given finite time,but also to achieve that the error output converges to zero asymptotically.The effectiveness of the results is illustrated by a simulation example.展开更多
An on-line forecasting model based on self-tuning support vectors regression for zinc output was put forward to maximize zinc output by adjusting operational parameters in the process of imperial smelting furnace. In ...An on-line forecasting model based on self-tuning support vectors regression for zinc output was put forward to maximize zinc output by adjusting operational parameters in the process of imperial smelting furnace. In this model, the mathematical model of support vector regression was converted into the same format as support vector machine for classification. Then a simplified sequential minimal optimization for classification was applied to train the regression coefficient vector α- α* and threshold b. Sequentially penalty parameter C was tuned dynamically through forecasting result during the training process. Finally, an on-line forecasting algorithm for zinc output was proposed. The simulation result shows that in spite of a relatively small industrial data set, the effective error is less than 10% with a remarkable performance of real time. The model was applied to the optimization operation and fault diagnosis system for imperial smelting furnace.展开更多
基金Projects(50775200,50905156)supported by the National Natural Science Foundation of China
文摘The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the output force.A discontinuous projection based adaptive robust controller (ARC) was constructed to achieve high-accuracy output force trajectory tracking for the system.In ARC,on-line parameter adaptation method was adopted to reduce the extent of parametric uncertainties due to the variation of friction parameters,and sliding mode control method was utilized to attenuate the effects of parameter estimation errors,unmodelled dynamics and disturbance.Furthermore,output stiffness maximization/minimization was introduced to fulfill the requirement of many robotic applications.Extensive experimental results were presented to illustrate the effectiveness and the achievable performance of the proposed scheme.For tracking a 0.5 Hz sinusoidal trajectory,maximum tracking error is 4.1 N and average tracking error is 2.2 N.Meanwhile,the output stiffness can be made and maintained near its maximum/minimum.
文摘A computationally efficient soft-output detector with lattice-reduction (LR) for the multiple-input multiple-output (MIMO) systems is proposed. In the proposed scheme, the sorted QR de- composition is applied on the lattice-reduced equivalent channel to obtain the tree structure. With the aid of the boundary control, the stack algorithm searches a small part of the whole search tree to generate a handful of candidate lists in the reduced lattice. The proposed soft-output algorithm achieves near-optimal perfor- mance in a coded MIMO system and the associated computational complexity is substantially lower than that of previously proposed methods.
基金Supported by the State Key Program of National Natural Science of China (60534010), National Basic Research Program of China (973 Program)(2009CB320604), National Natural Science Foundation of China (60674021), the Funds for Creative Research Groups of China (60521003), the 111 Project(B08015), and the Funds of Ph.D. Program of Ministry of Eduction, China (20060145019).
基金the National Natural Science Foundation of China (60574083)the Scientific Research Foundation for the Returned Overseas Chinese Scholars (SRF for ROCS),State Education Ministry of China.
文摘The H∞ output feedback control problem for uncertain discrete-time switched systems is reasearclled. A new characterization of stability and H∞ performance for the switched system under arbitrary switching is obtained by using switched Lyapunov function. Then, based on the characterization, a linear matrix inequality (LMI) approach is developed to design a switched output feedback controller which guarantees the stability and H∞ performance of the closed-loop system. A numerical example is presented to demonstrate the application of the proposed method.
基金supported by the National Natural Science Foundation of China(61074004)the Research Fund for the Doctoral Program of Higher Education(20110121110017)
文摘Transient performance for output regulation problems of linear discrete-time systems with input saturation is addressed by using the composite nonlinear feedback(CNF) control technique. The regulator is designed to be an additive combination of a linear regulator part and a nonlinear feedback part. The linear regulator part solves the regulation problem independently which produces a quick output response but large oscillations. The nonlinear feedback part with well-tuned parameters is introduced to improve the transient performance by smoothing the oscillatory convergence. It is shown that the introduction of the nonlinear feedback part does not change the solvability conditions of the linear discrete-time output regulation problem. The effectiveness of transient improvement is illustrated by a numeric example.
基金supported by the Research Start Funds for Introducing High-level Talents of North China University of Water Resources and Electric Power
文摘This paper expresses the efficient outputs of decisionmaking unit(DMU) as the sum of "average outputs" forecasted by a GM(1,N) model and "increased outputs" which reflect the difficulty to realize efficient outputs.The increased outputs are solved by linear programming using data envelopment analysis efficiency theories,wherein a new sample is introduced whose inputs are equal to the budget in the issue No.n + 1 and outputs are forecasted by the GM(1,N) model.The shortcoming in the existing methods that the forecasted efficient outputs may be less than the possible actual outputs according to developing trends of input-output rate in the periods of pre-n is overcome.The new prediction method provides decision-makers with more decisionmaking information,and the initial conditions are easy to be given.
基金supported by the National Natural Science Foundation of China (60574011)College Research Project of Liaoning Province(L2010522)
文摘The problem of the quantized dynamic output feedback controller design for networked control systems is mainly discussed. By using the quantized information of the system measurement output and the control input, a novel networked control system model is described. This model includes many networkinduced features, such as multi-rate sampled-data, quantized signal, time-varying delay and packet dropout. By constructing suitable Lyapunov-Krasovskii functional, a less conservative stabilization criterion is established in terms of linear matrix inequalities. The quantized control strategy involves the updating values of the quantizer parameters μi(i = 1, 2)(μi take on countable sets of values which dependent on the information of the system measurement outputs and the control inputs). Furthermore, a numerical example is given to illustrate the effectiveness of the proposed method.
基金Project(60704005) supported by the National Natural Science Foundation of China Project(07ZR14119) supported by Natural Science Foundation of Shanghai Science and Technology Commission Project(2009AA04Z213) supported by the National High-Tech Research and Development Program of China
文摘An adaptive output feedback control was proposed to deal with a class of nonholonomic systems in chained form with strong nonlinear disturbances and drift terms. The objective was to design adaptive nonlinear output feedback laws such that the closed-loop systems were globally asymptotically stable, while the estimated parameters remained bounded. The proposed systematic strategy combined input-state-scaling with backstepping technique. The adaptive output feedback controller was designed for a general case of uncertain chained system. Furthermore, one special case was considered. Simulation results demonstrate the effectiveness of the proposed controllers.
基金This work was supported by the National Natural Science Foundation of China(62003131,62073121,62173125)the Natural Science Foundation of Jiangsu Province(BK20200520).
文摘This paper studies the fixed-time output-feedback control for a class of linear systems subject to matched uncertainties.To estimate the uncertainties and system states,we design a composite observer which consists of a high-order sliding mode observer and a Luenberger observer.Then,a robust output-feedback controller with fixed-time convergence guarantee is constructed.Rigorous theoretical proof shows that with the proposed controller,the system states can converge to zero in fixed-time free of the initial conditions.Finally,simulation comparison with existing algorithms is given.Simulation results verify the effectiveness of the proposed controller in terms of its fixed-time convergence and perfect disturbance rejection.
基金supported by the National Natural Science Foundation of China(61172127)the Natural Science Foundation of Anhui Province(1408085MF121)
文摘Removal of cloud cover on the satellite remote sensing image can effectively improve the availability of remote sensing images. For thin cloud cover, support vector value contourlet transform is used to achieve multi-scale decomposition of the area of thin cloud cover on remote sensing images. Through enhancing coefficients of high frequency and suppressing coefficients of low frequency, the thin cloud is removed. For thick cloud cover, if the areas of thick cloud cover on multi-source or multi-temporal remote sensing images do not overlap, the multi-output support vector regression learning method is used to remove this kind of thick clouds. If the thick cloud cover areas overlap, by using the multi-output learning of the surrounding areas to predict the surface features of the overlapped thick cloud cover areas, this kind of thick cloud is removed. Experimental results show that the proposed cloud removal method can effectively solve the problems of the cloud overlapping and radiation difference among multi-source images. The cloud removal image is clear and smooth.
文摘Considering the modeling errors of on-board self-tuning model in the fault diagnosis of aero-engine, a new mechanism for compensating the model outputs is proposed. A discrete series predictor based on multi-outputs least square support vector regression (LSSVR) is applied to the compensation of on-board self-tuning model of aero-engine, and particle swarm optimization (PSO) is used to the kernels selection of multi-outputs LSSVR. The method need not reconstruct the model of aero-engine because of the differences in the individuals of the same type engines and engine degradation after use. The concrete steps for the application of the method are given, and the simulation results show the effectiveness of the algorithm.
基金supported by the National Natural Science Foundation of China (60804021)the Fundamental Research Funds for the Central Universities (JY10000970001)
文摘An adaptive neural network output-feedback regulation approach is proposed for a class of multi-input-multi-output nonlinear time-varying delayed systems.Both the designed observer and controller are free from time delays.Different from the existing results,this paper need not the assumption that the upper bounding functions of time-delay terms are known,and only a neural network is employed to compensate for all the upper bounding functions of time-delay terms,so the designed controller procedure is more simplified.In addition,the resulting closed-loop system is proved to be semi-globally ultimately uniformly bounded,and the output regulation error converges to a small residual set around the origin.Two simulation examples are provided to verify the effectiveness of control scheme.
基金supported by the National Natural Science Foundation of China(61374035)the Fundamental Research Funds for the Central Universities(20720150177)
文摘The global robust output regulation problem of the singular nonlinear system is investigated. Motivated by the input-output linearization of the normal affine nonlinear system, a global diffeomorphism map is designed under the assumption that the singular nonlinear system has a strong relative degree. The global diffeomorphism map transfers the singular nonlinear system into a new singular nonlinear system with a special structure. Attaching an internal model to the new singular nonlinear system yields an augmented singular nonlinear system and the global robust stabilization solution of the augmented system implies the global robust output regulation solution of the original singular nonlinear system. Then the global stabilization problem is solved by some appropriate assumptions and the solvability conditions of the global robust output regulation problem are established. Finally, a simulation example is given to illustrate the design approach.
基金the National Natural Science Foundation of China (60372055) and the National DoctoralFoundation of China (2003698027).
文摘In order to investigate the impact of channel model parameters on the channel capacity of a multipleinput multiple-output (MIMO) system, a novel method is proposed to explore the channel capacity under Rayleigh fiat fading with correlated transmit and receive antennas. The optimal transmitting direction which can achieve maximum channel capacity is derived using random matrices theory. In addition, the closed-form expression for the channel capacity of MIMO systems is given by utilizing the properties of Wishart distribution when SNR is high. Computer simulation results show that the channel capacity is maximized when the antenna spacing increases to a certain point, and furthermore, the larger the scattering angle is, the more quickly the channel capacity converges to its maximum. At high SNR (〉12 dB), the estimation of capacity is close to its true wlue. And, when the same array configuration is adopted both at the transmitter and the receiver, the UCA yields higher channel capacity than ULA.
基金supported by the National Natural Science Foundation of China(61374035)
文摘Composite nonlinear feedback (CNF) control techniquefor tracking control problems is extended to the output regulationproblem of singular linear systems with input saturation. A statefeedback CNF control law and an output feedback CNF controllaw are constructed respectively for the output regulation problemof singular linear systems with input saturation. It is shown thatthe output regulation problem by CNF control is solvable underthe same solvability conditions of the output regulation problemby linear control. However, with the virtue of the CNF control, thetransient performance of the closed-loop system can be improvedby carefully designing the linear part and the nonlinear part of theCNF control law. The design procedure and the improvement ofthe transient performance of the closed-loop system are illustratedwith a numerical simulation.
基金supported by the National Natural Science Foundation of China (6096400460864004+2 种基金50808025)the Fok Ying Tung Education Foundation (122013)the Scientific Research Fund of Hunan Provincial Education Department (08A003)
文摘A novel decentralized indirect adaptive output feedback fuzzy controller is developed for a class of large-scale uncertain nonlinear systems using error filtering.By the properly filtering of the observation error dynamics,the strictly positive-real condition is guaranteed to hold such that the proposed output feedback and adaptation mechanisms are practicable in practice owing to the fact that its implementation does not require the observation error vector itself any more,which corrects the impracticable schemes in the previous literature involved.The presented control algorithm can ensure that all the signals of the closed-loop large-scale system keep uniformly ultimately bounded and that the tracking error converges to zero asymptotically.The decentralized output feedback fuzzy controller can be applied to address the longitudinal control problem of a string of vehicles within an automated highway system(AHS) and the effectiveness of the design procedure is supported by simulation results.
基金supported by the National Natural Science Foundation of China(61873219)。
文摘This paper investigates the problem of robust output regulation control with prospected transient property for strict feedback systems.By employing the internal model principle,the robust output regulation problem with a prospected property can be transformed to a robust stabilization problem with a new output constraint.Then,by constructing the speed function and adopting barrier Lyapunov function technique,the dynamic feedback controller can be designed not only to drive error output of the closed-loop system entering into a prescribed performance bound within a given finite time,but also to achieve that the error output converges to zero asymptotically.The effectiveness of the results is illustrated by a simulation example.
文摘An on-line forecasting model based on self-tuning support vectors regression for zinc output was put forward to maximize zinc output by adjusting operational parameters in the process of imperial smelting furnace. In this model, the mathematical model of support vector regression was converted into the same format as support vector machine for classification. Then a simplified sequential minimal optimization for classification was applied to train the regression coefficient vector α- α* and threshold b. Sequentially penalty parameter C was tuned dynamically through forecasting result during the training process. Finally, an on-line forecasting algorithm for zinc output was proposed. The simulation result shows that in spite of a relatively small industrial data set, the effective error is less than 10% with a remarkable performance of real time. The model was applied to the optimization operation and fault diagnosis system for imperial smelting furnace.