为有效识别桥梁健康监测数据的异常,减少误预警、漏预警现象,保障桥梁监测数据的质量和有效性,针对大跨度斜拉桥长期监测数据的缺失、离群和漂移3类异常数据,提出基于时间序列压缩分割的监测数据异常识别算法。该算法将原始监测数据时...为有效识别桥梁健康监测数据的异常,减少误预警、漏预警现象,保障桥梁监测数据的质量和有效性,针对大跨度斜拉桥长期监测数据的缺失、离群和漂移3类异常数据,提出基于时间序列压缩分割的监测数据异常识别算法。该算法将原始监测数据时间序列通过基于序列重要点(Series Importance Point, SIP)的时间序列线性分段(Piecewise Linear Represent, PLR)算法(PLR_SIP)得到数条时间子序列;然后采用欧氏距离进行时间子序列的相似性分析,并基于改进的局部离群因子(Local Outlier Factor, LOF)算法计算每条时间子序列的局部离群因子;最后将其与设定的阈值相比较,从而识别出监测数据的异常。为验证该算法的准确性与工程实用性,对某公路大跨度斜拉桥健康监测数据进行异常识别。结果表明:采用PLR_SIP算法对原始时间序列压缩分割得到的时间子序列能够准确地反映原序列的变化趋势和范围;改进的LOF算法突破了传统LOF算法仅能识别离群值这类无持续时间异常的局限性,能够排除噪声的干扰,实现对离群、缺失和漂移3种异常的识别。该算法无需定义训练集,直接以原始监测数据作为算法的输入,同时能够自适应调整阈值参数,具有良好的可扩展性、实时性、准确性和高效性,适用于处理实时、大量的桥梁健康监测数据。展开更多
在带钢冷连轧生产过程中,轧制力预测准确度直接影响产品质量。为提高轧制力预测准确度,提出了基于LSTM-JITRVM(long short term memory-just in time relevance vector machine)的轧制力模型。首先,使用循环自编码网络对输入数据进行深...在带钢冷连轧生产过程中,轧制力预测准确度直接影响产品质量。为提高轧制力预测准确度,提出了基于LSTM-JITRVM(long short term memory-just in time relevance vector machine)的轧制力模型。首先,使用循环自编码网络对输入数据进行深层次特征提取,然后使用局部离群因子算法判断测试样本与其邻域点是否属于同一分布,针对不同的分布使用不同的自学习回归模型进行拟合。仿真结果表明,该模型预测准确度可控制在3%以内,能够实现轧制力的高准确度在线预测。展开更多
文摘为有效识别桥梁健康监测数据的异常,减少误预警、漏预警现象,保障桥梁监测数据的质量和有效性,针对大跨度斜拉桥长期监测数据的缺失、离群和漂移3类异常数据,提出基于时间序列压缩分割的监测数据异常识别算法。该算法将原始监测数据时间序列通过基于序列重要点(Series Importance Point, SIP)的时间序列线性分段(Piecewise Linear Represent, PLR)算法(PLR_SIP)得到数条时间子序列;然后采用欧氏距离进行时间子序列的相似性分析,并基于改进的局部离群因子(Local Outlier Factor, LOF)算法计算每条时间子序列的局部离群因子;最后将其与设定的阈值相比较,从而识别出监测数据的异常。为验证该算法的准确性与工程实用性,对某公路大跨度斜拉桥健康监测数据进行异常识别。结果表明:采用PLR_SIP算法对原始时间序列压缩分割得到的时间子序列能够准确地反映原序列的变化趋势和范围;改进的LOF算法突破了传统LOF算法仅能识别离群值这类无持续时间异常的局限性,能够排除噪声的干扰,实现对离群、缺失和漂移3种异常的识别。该算法无需定义训练集,直接以原始监测数据作为算法的输入,同时能够自适应调整阈值参数,具有良好的可扩展性、实时性、准确性和高效性,适用于处理实时、大量的桥梁健康监测数据。
文摘在带钢冷连轧生产过程中,轧制力预测准确度直接影响产品质量。为提高轧制力预测准确度,提出了基于LSTM-JITRVM(long short term memory-just in time relevance vector machine)的轧制力模型。首先,使用循环自编码网络对输入数据进行深层次特征提取,然后使用局部离群因子算法判断测试样本与其邻域点是否属于同一分布,针对不同的分布使用不同的自学习回归模型进行拟合。仿真结果表明,该模型预测准确度可控制在3%以内,能够实现轧制力的高准确度在线预测。