期刊文献+
共找到330篇文章
< 1 2 17 >
每页显示 20 50 100
Outlier detection based on multi-dimensional clustering and local density
1
作者 SHOU Zhao-yu LI Meng-ya LI Si-min 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1299-1306,共8页
Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outl... Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments. 展开更多
关键词 data mining outlier detection outlier detection method based on MULTI-DIMENSIONAL CLUSTERING and local density (ODBMCLD) algorithm deviation DEGREE
在线阅读 下载PDF
Outliers Mining in Time Series Data Sets 被引量:3
2
作者 Zheng Binxiang,Du Xiuhua & Xi Yugeng Institute of Automation, Shanghai Jiaotong University,Shanghai 200030,P.R.China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第1期93-97,共5页
In this paper, we present a cluster-based algorithm for time series outlier mining.We use discrete Fourier transformation (DFT) to transform time series from time domain to frequency domain. Time series thus can be ma... In this paper, we present a cluster-based algorithm for time series outlier mining.We use discrete Fourier transformation (DFT) to transform time series from time domain to frequency domain. Time series thus can be mapped as the points in k -dimensional space.For these points, a cluster-based algorithm is developed to mine the outliers from these points.The algorithm first partitions the input points into disjoint clusters and then prunes the clusters,through judgment that can not contain outliers.Our algorithm has been run in the electrical load time series of one steel enterprise and proved to be effective. 展开更多
关键词 data mining Time series outlier mining.
在线阅读 下载PDF
基于快速SVDD的无线传感器网络Outlier检测 被引量:8
3
作者 谢迎新 陈祥光 +2 位作者 余向明 岳彬 郭静 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第1期46-51,共6页
Outlier是基于无线传感器网络的数据收集应用中常见的数据故障类型,严重影响数据质量。本文提出一种基于快速SVDD的无线传感器网络Outlier检测方法,其基本思想是:首先利用快速SVDD算法获得包含正常样本的最小球形边界,然后通过该边界判... Outlier是基于无线传感器网络的数据收集应用中常见的数据故障类型,严重影响数据质量。本文提出一种基于快速SVDD的无线传感器网络Outlier检测方法,其基本思想是:首先利用快速SVDD算法获得包含正常样本的最小球形边界,然后通过该边界判断未知样本的类别,本法采用训练集约减策略和基于二阶逼近的SMO算法来加速SVDD的训练。基于合成数据和真实数据的仿真实验表明,该方法在确保分类精度的同时,运行速度快,内存开销小,适用于资源有限的无线传感器网络。 展开更多
关键词 无线传感器网络 outlier检测 SVDD 训练集约简 SMO算法
在线阅读 下载PDF
Outlier-DivideConquer:近似聚集查询中离群分治取样算法 被引量:1
4
作者 胡文瑜 孙志挥 张柏礼 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期524-531,共8页
取样是一种通用有效的近似技术,利用取样技术进行近似聚集查询处理是决策支持系统和数据挖掘实现技术中的常用方法.如何正确有效地给出近似查询结果并最小化近似查询误差是近似查询处理的关键和目标.在深入研究近似聚集查询取样方法的... 取样是一种通用有效的近似技术,利用取样技术进行近似聚集查询处理是决策支持系统和数据挖掘实现技术中的常用方法.如何正确有效地给出近似查询结果并最小化近似查询误差是近似查询处理的关键和目标.在深入研究近似聚集查询取样方法的基础上,本文提出了一个有误差确界且只需单遍扫描数据集的离群分治取样Outlier-DivideConquer算法,该算法在聚集属性内部存在高方差分布时能克服随机均匀取样局限,可显著降低近似查询误差,且执行效率优于同类算法.最后通过与传统均匀取样算法的实验比较验证了Outlier-DivideConquer算法的有效性和正确性. 展开更多
关键词 数据挖掘 决策支持 近似聚集查询 均匀取样 离群分治
在线阅读 下载PDF
基于离群点检测的业务流程不频繁行为挖掘方法
5
作者 田银花 武于皓 +2 位作者 张如月 韩咚 李昕燃 《山东科技大学学报(自然科学版)》 北大核心 2025年第2期95-103,共9页
随着信息技术的快速发展和数字化转型的不断深入,企业积累了海量的业务数据,其中包含了丰富的业务流程信息。然而,现有过程挖掘方法侧重于频繁行为建模,忽略了事件日志中虽不频繁但具有重要价值的行为。针对上述问题,提出一种基于离群... 随着信息技术的快速发展和数字化转型的不断深入,企业积累了海量的业务数据,其中包含了丰富的业务流程信息。然而,现有过程挖掘方法侧重于频繁行为建模,忽略了事件日志中虽不频繁但具有重要价值的行为。针对上述问题,提出一种基于离群点检测的不频繁行为挖掘方法。从事件日志中提取事件轨迹、频率和标签等信息,借鉴机器翻译领域的以召回率为导向的摘要评价指标(ROUGE)度量轨迹之间的相似度,通过改进的局部离群因子(LOF)算法挖掘不频繁行为。综合考量局部密度、频率和轨迹相似度等信息,使用真实事件日志进行评估,并与现有算法进行对比。实验结果表明,该方法能够有效批量处理事件日志,准确识别其中的不频繁行为,从而提供可靠的挖掘结果。 展开更多
关键词 离群点检测 轨迹相似度 不频繁行为挖掘 业务流程 事件日志
在线阅读 下载PDF
基于Hampel滤波的海洋磁测数据异常值检测方法研究
6
作者 谢宇轩 范琳琳 +2 位作者 郭鑫 黄彦铭 张锦昌 《海洋学报》 北大核心 2025年第4期53-64,共12页
海洋磁测数据易受导航误差、仪器故障及人工记录错误等因素干扰,导致异常值频现。这些异常值不仅扭曲磁异常形态,还会破坏磁条带的连续性,严重影响数据质量及后续解释的可靠性。因此,异常值的检测与去除是海洋磁测数据处理中的关键环节... 海洋磁测数据易受导航误差、仪器故障及人工记录错误等因素干扰,导致异常值频现。这些异常值不仅扭曲磁异常形态,还会破坏磁条带的连续性,严重影响数据质量及后续解释的可靠性。因此,异常值的检测与去除是海洋磁测数据处理中的关键环节。然而,传统方法难以有效区分不同类型的异常值,尤其是上下文异常值,且人工检测既耗时又易产生误判,效率较低。针对这一问题,本研究提出了一种基于局部中位数加权策略的自适应Hampel滤波方法。该方法通过动态调整数据点权重,能够更精准地识别和去除海洋磁测数据中的异常值,尤其在数据分布异质性较大的区域表现优异。与自回归模型、孤立森林及自编码器等传统方法相比,加权Hampel滤波器不仅能够有效检测并去除全局异常值和上下文异常值,还能更好地保留数据的原始特征,显著提升了检测精度。在对中西太平洋麦哲伦海隆地区实测数据的验证中,加权Hampel滤波器的F1分数始终领先于其他方法,证明其在异常值检测中的优越性。该方法为提升海洋磁测数据质量及可解释性提供了重要技术支持,并为未来大规模数据的自动化处理奠定基础。 展开更多
关键词 海洋磁学 海洋磁测数据处理 异常值检测 Hampel滤波
在线阅读 下载PDF
基于时间序列压缩分割的监测数据异常识别算法研究 被引量:9
7
作者 蒲黔辉 张子怡 +2 位作者 肖图刚 洪彧 文旭光 《桥梁建设》 EI CSCD 北大核心 2024年第3期15-23,共9页
为有效识别桥梁健康监测数据的异常,减少误预警、漏预警现象,保障桥梁监测数据的质量和有效性,针对大跨度斜拉桥长期监测数据的缺失、离群和漂移3类异常数据,提出基于时间序列压缩分割的监测数据异常识别算法。该算法将原始监测数据时... 为有效识别桥梁健康监测数据的异常,减少误预警、漏预警现象,保障桥梁监测数据的质量和有效性,针对大跨度斜拉桥长期监测数据的缺失、离群和漂移3类异常数据,提出基于时间序列压缩分割的监测数据异常识别算法。该算法将原始监测数据时间序列通过基于序列重要点(Series Importance Point, SIP)的时间序列线性分段(Piecewise Linear Represent, PLR)算法(PLR_SIP)得到数条时间子序列;然后采用欧氏距离进行时间子序列的相似性分析,并基于改进的局部离群因子(Local Outlier Factor, LOF)算法计算每条时间子序列的局部离群因子;最后将其与设定的阈值相比较,从而识别出监测数据的异常。为验证该算法的准确性与工程实用性,对某公路大跨度斜拉桥健康监测数据进行异常识别。结果表明:采用PLR_SIP算法对原始时间序列压缩分割得到的时间子序列能够准确地反映原序列的变化趋势和范围;改进的LOF算法突破了传统LOF算法仅能识别离群值这类无持续时间异常的局限性,能够排除噪声的干扰,实现对离群、缺失和漂移3种异常的识别。该算法无需定义训练集,直接以原始监测数据作为算法的输入,同时能够自适应调整阈值参数,具有良好的可扩展性、实时性、准确性和高效性,适用于处理实时、大量的桥梁健康监测数据。 展开更多
关键词 斜拉桥 健康监测数据 异常识别 PLR_SIP算法 LOF算法 时间序列 欧氏距离 局部离群因子
在线阅读 下载PDF
基于CART决策树的分布式数据离群点检测算法 被引量:3
8
作者 朱华 乔勇进 董国钢 《现代电子技术》 北大核心 2024年第16期157-162,共6页
在分布式计算环境中,离群点通常表示数据中的异常情况,例如故障、欺诈、攻击等。通过检测分布式数据的离群点,可以对这些异常数据进行集中处理,保护系统和数据的安全。而进行离群点检测时,不仅要考虑数据的规模和复杂性,还要在分布式环... 在分布式计算环境中,离群点通常表示数据中的异常情况,例如故障、欺诈、攻击等。通过检测分布式数据的离群点,可以对这些异常数据进行集中处理,保护系统和数据的安全。而进行离群点检测时,不仅要考虑数据的规模和复杂性,还要在分布式环境下高效地发现离群点。因此,提出一种基于CART决策树的分布式数据离群点检测算法。在构建CART决策树时,使用类间中心距离作为分裂准则,根据分离类别对训练数据进行分类,从而确定数据的类型。在上述基础上,考虑到离群点的分布模式与其周围数据对象不同,使用空间局部偏离因子(SLDF)对空间内各个数据对象之间的离群程度展开度量,同时在高维空间内展开网格划分,引入SLDF算法检测剩余离群点集,最终实现分布式数据离群点检测。实验结果表明,所提方法的离散点检测错误率在0.010以内,可以更加精准地实现分布式数据离群点检测,具有良好的检测性能。 展开更多
关键词 CART决策树 分布式数据 离群点检测 类间距离 数据分类 空间局部偏离因子
在线阅读 下载PDF
基于映射距离比离群因子的离群点检测算法 被引量:1
9
作者 张忠平 姚春辰 +3 位作者 孙光旭 刘硕 张睿博 魏永辉 《计算机集成制造系统》 EI CSCD 北大核心 2024年第5期1719-1732,共14页
针对基于邻近性的离群点检测方法需要花费大量时间过滤正常点,并且在检测全局离群点时难以检测出局部离群点的问题,提出一种基于映射距离比离群因子离群点检测(MDROF)算法。首先,为了减少正常点在检测过程中的时间消耗,给出了差异相似... 针对基于邻近性的离群点检测方法需要花费大量时间过滤正常点,并且在检测全局离群点时难以检测出局部离群点的问题,提出一种基于映射距离比离群因子离群点检测(MDROF)算法。首先,为了减少正常点在检测过程中的时间消耗,给出了差异相似度的概念,通过定义差异相似度剪枝因子过滤掉数据集中的大部分正常点。其次,定义映射k距离,通过映射距离与可达距离的比值刻画数据对象的局部离群程度,通过可达密度刻画数据对象的全局离群程度。最后,结合数据对象相互近邻点的平均排位定义映射距离比离群因子来检测离群点。在人工数据集以及真实数据集上分别对该算法与其他经典的离群点检测算法在精确率、AUC值和离群点发现曲线上进行实验对比分析。实验结果证明MDROF算法在离群点检测的准确性和稳定性上明显优于对比算法。 展开更多
关键词 数据挖掘 离群点检测 差异相似度剪枝 映射k距离 映射距离比
在线阅读 下载PDF
基于局部信息熵的计算机网络高维数据离群点检测系统 被引量:3
10
作者 谭印 苏雯洁 《现代电子技术》 北大核心 2024年第10期91-95,共5页
通过离群点检测可以及时发现计算机网络中的异常,从而为风险预警和控制提供重要线索。为此,设计一种基于局部信息熵的计算机网络高维数据离群点检测系统。在高维数据采集模块中,利用Wireshark工具采集计算机网络原始高维数据包;并在高... 通过离群点检测可以及时发现计算机网络中的异常,从而为风险预警和控制提供重要线索。为此,设计一种基于局部信息熵的计算机网络高维数据离群点检测系统。在高维数据采集模块中,利用Wireshark工具采集计算机网络原始高维数据包;并在高维数据存储模块中建立MySQL数据库、Zooleeper数据库与Redis数据库,用于存储采集的高维数据包。在高维数据离群点检测模块中,通过微聚类划分算法划分存储的高维数据包,得到数个微聚类;然后计算各微聚类的局部信息熵,确定各微聚类内是否存在离群点;再依据偏离度挖掘微聚类内的离群点;最后,利用高维数据可视化模块呈现离群点检测结果。实验证明:所设计系统不仅可以有效采集计算机网络高维数据并划分计算机网络高维数据,还能够有效检测高维数据离群点,且离群点检测效率较快。 展开更多
关键词 计算机网络 高维数据 离群点检测 局部信息熵 Wireshark工具 微聚类划分
在线阅读 下载PDF
基于贡献度和数据有效性检验的共识机制
11
作者 时小虎 姚鑫 +1 位作者 孙延风 马德印 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期160-169,178,共11页
将区块链技术引入到分布式数据维护系统,旨在解决基于传统中心化数据库的分布式系统存在的数据维护不透明、数据易被篡改、历史记录不可追溯等问题,提出一种基于贡献度和数据有效性检验的共识机制.该算法提出一种贡献度优先的随机可验... 将区块链技术引入到分布式数据维护系统,旨在解决基于传统中心化数据库的分布式系统存在的数据维护不透明、数据易被篡改、历史记录不可追溯等问题,提出一种基于贡献度和数据有效性检验的共识机制.该算法提出一种贡献度优先的随机可验证领导者选举机制,保证记账权分配的随机性及可验证性.进一步引入密度峰值算法对交易数据有效性进行校验,对打包区块的正确性达成共识.最后将所提出的共识机制应用于梅花鹿分布式养殖场场景,结果验证了密度峰值算法在交易数据有效性检测任务中的准确性和高效性.出块时延分析和安全性分析表明,所提出的共识机制能够满足数据有效性验证的实时性需求,能耗较小,具有很强的灾备能力. 展开更多
关键词 区块链 共识机制 离群点检测 分布式数据维护 溯源
在线阅读 下载PDF
ECOD算法在飞机不稳定进近检测中的应用
12
作者 卢晓光 许忠睿 +1 位作者 张喆 文贵宏 《安全与环境学报》 CAS CSCD 北大核心 2024年第5期1872-1878,共7页
在飞机进近和着陆阶段,一旦发生不稳定进近就可能导致航空事故发生,因此终端空域内不稳定进近检测是航空器运行监控领域的热点研究问题。针对终端区的不稳定进近检测,利用OpenSky提供的开源航空器监视数据提出了基于数据驱动的检测方法... 在飞机进近和着陆阶段,一旦发生不稳定进近就可能导致航空事故发生,因此终端空域内不稳定进近检测是航空器运行监控领域的热点研究问题。针对终端区的不稳定进近检测,利用OpenSky提供的开源航空器监视数据提出了基于数据驱动的检测方法。从能量管理的角度入手,构建基于无监督异常检测(Empirical-Cumulative-Distribution-based Outlier Detection,ECOD)算法的不稳定进近检测模型,并结合主成分分析(Principal Components Analysis,PCA),获取了飞机能量状态的异常评分进而实现检测。复飞事件检测的验证分析结果表明检测模型在准确率与效率方面具有优势,模型可实现实时部署与在线更新。 展开更多
关键词 安全工程 飞行安全 不稳定进近 数据驱动 无监督异常检测(ECOD) 异常评分
在线阅读 下载PDF
带高斯核的支持向量数据描述问题的高效积极集法
13
作者 张奇业 曾心蕊 《计算机应用》 CSCD 北大核心 2024年第12期3808-3814,共7页
针对积极集法求解支持向量数据描述(SVDD)问题时,在大规模数据场景下每次迭代计算量大、效率低的问题,设计一种带高斯核的SVDD问题的高效积极集法(ASM-SVDD)。首先,利用SVDD对偶模型约束条件的特殊性,每次迭代求解一个降维的等式约束子... 针对积极集法求解支持向量数据描述(SVDD)问题时,在大规模数据场景下每次迭代计算量大、效率低的问题,设计一种带高斯核的SVDD问题的高效积极集法(ASM-SVDD)。首先,利用SVDD对偶模型约束条件的特殊性,每次迭代求解一个降维的等式约束子问题;其次,通过矩阵操作实现积极集的更新,每次更新计算只与当前支持向量及单个样本点有关,从而极大地降低计算量;另外,由于ASM-SVDD算法是传统积极集法的一种变体,应用积极集法理论得到该算法的有限终止性;最后,基于仿真和真实数据集,验证ASM-SVDD算法性能。结果表明,随着训练轮次的增加,ASM-SVDD算法可以有效提升模型性能。与求解SVDD问题的快速增量算法FISVDD (Fast Incremental SVDD)相比,ASM-SVDD算法在典型的低维高样本数据集shuttle上训练得到的目标函数值可减小25.9%,对支持向量的识别能力可提高10.0%。同时,ASM-SVDD算法在不同数据集上的F1分数相较于FISVDD算法均有提高,在超大规模数据集criteo上提高量可达0.07%。可见,ASM-SVDD算法在检测异常值的同时,训练得到的超球体更稳定,且对测试样本的判断准确率也更高,适用于大规模数据场景下的异常值检测。 展开更多
关键词 支持向量数据描述 二次规划 积极集法 异常值检测 有限终止性
在线阅读 下载PDF
离群点检测算法综述 被引量:2
14
作者 孔翎超 刘国柱 《计算机科学》 CSCD 北大核心 2024年第8期20-33,共14页
离群点检测作为数据挖掘领域的一个重要研究方向,其目的是发掘隐藏在数据集合中与众不同且具有潜在分析价值的数据,辅助研究人员甄别数据源可能存在的问题。目前,离群点检测已被广泛应用于欺诈识别、智慧医疗、入侵检测、故障诊断等诸... 离群点检测作为数据挖掘领域的一个重要研究方向,其目的是发掘隐藏在数据集合中与众不同且具有潜在分析价值的数据,辅助研究人员甄别数据源可能存在的问题。目前,离群点检测已被广泛应用于欺诈识别、智慧医疗、入侵检测、故障诊断等诸多领域。文中在总结前人经验的基础上,首先讨论离群点的定义、产生原因以及典型应用领域,综述了DBSCAN和LOF等离群点检测经典算法及其改进算法的优势和局限,分析了深度学习方法在离群点检测领域的优势;其次结合当前互联网背景下海量、高维、时序数据处理需求,对离群点检测算法在新环境下的发展状况做进一步研究;最后介绍离群点检测算法的评价指标、代价因子在离群点检测评价中的作用以及常用工具包和数据集,总结展望了离群点检测面临的挑战和未来的发展方向。 展开更多
关键词 离群点 异常检测 深度学习 时序数据 数据挖掘
在线阅读 下载PDF
基于MOPSO算法改进的异常点检测方法 被引量:2
15
作者 高勃 柴学科 朱明皓 《计算机集成制造系统》 EI CSCD 北大核心 2024年第7期2319-2327,共9页
挖掘工业大数据的隐含价值是智能制造的一个重要研究方向,针对工业大数据特点开展异常点检测是实现数据分析的前提。首先,介绍了工业大数据异常点检测解决的主要问题,提出相关定义。其次,基于多目标粒子群算法(MOPSO),提出一种工业大数... 挖掘工业大数据的隐含价值是智能制造的一个重要研究方向,针对工业大数据特点开展异常点检测是实现数据分析的前提。首先,介绍了工业大数据异常点检测解决的主要问题,提出相关定义。其次,基于多目标粒子群算法(MOPSO),提出一种工业大数据异常点检测的改进DBSCAN模型,介绍了模型的算法设计思想、算法步骤,完成了算法伪代码的编写,并提出了算法时间复杂度的计算方法。最后,通过某电芯工厂制造数据,进行了模型仿真与实验,经实验验证,所提模型提高了工业大数据异常点检测的准确率,为数据挖掘在工业异常点检测中的应用提供了参考。 展开更多
关键词 工业大数据 异常点检测 多目标粒子群算法 DBSCAN模型
在线阅读 下载PDF
基于无监督学习的异质网络多尺度离群点挖掘研究 被引量:1
16
作者 朱辉 张莉芸 《现代电子技术》 北大核心 2024年第12期182-186,共5页
现有的异质网络多尺度离群点挖掘算法忽略了数据点之间的顺序关系,无法充分利用数据点在异质网络中的排列顺序信息,从而导致聚类精度下降。对此,提出一种基于无监督学习的异质网络多尺度离群点挖掘方法,对异质网络的多节点、多边特点进... 现有的异质网络多尺度离群点挖掘算法忽略了数据点之间的顺序关系,无法充分利用数据点在异质网络中的排列顺序信息,从而导致聚类精度下降。对此,提出一种基于无监督学习的异质网络多尺度离群点挖掘方法,对异质网络的多节点、多边特点进行分析。利用季节-趋势时序分解法提取异质网络数据特征。根据数据特征,结合K-means聚类算法与排序算法,将数据点的排序信息添加至聚类过程中,以实现对异质网络数据离群点的挖掘。实验结果表明,利用该方法进行网络数据节点聚类的准确率均能达到80%以上;并且实现了多尺度离群点挖掘后,能够精准地识别出离群点,为后续的网络通信维护提供了良好的保障。 展开更多
关键词 异质网络 多尺度 离群点挖掘 无监督学习 K均值聚类 网络数据 离群因子
在线阅读 下载PDF
基于局部离群点检测的动力电池组不一致早期故障预警 被引量:1
17
作者 魏正新 吕晗珺 +1 位作者 闵永军 张涌 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第6期21-29,共9页
随着新能源汽车的飞速发展,其动力电池的安全性问题受到了社会各界的广泛关注。在新能源汽车运行监控平台上,已有的动力电池安全检测功能无法在电池故障早期给出预警。针对电池不一致性预警问题,设计了一种更适用于实现动力电池组不一... 随着新能源汽车的飞速发展,其动力电池的安全性问题受到了社会各界的广泛关注。在新能源汽车运行监控平台上,已有的动力电池安全检测功能无法在电池故障早期给出预警。针对电池不一致性预警问题,设计了一种更适用于实现动力电池组不一致早期故障预警问题的流程。设计了一种基于箱型图法的动态梯度数据清洗策略实现异常数据有效剔除;对数据进行充电阶段划分,提取单体电压变化不一致特征;在此基础上,借助离群检测算法得到各电池单体离群值,进行不一致故障初期预警并识别异常电池单体。对实际出现电池不一致故障车辆回溯分析,验证该流程提前监控平台已有的报警机制不少于7个充电周期,并可对异常单体进行准确定位。 展开更多
关键词 动力电池 大数据 离群检测 电池不一致 故障预警
在线阅读 下载PDF
基于动态门限与自适应插值的外引导平滑算法 被引量:1
18
作者 王厚峰 张世学 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第4期247-255,共9页
为了实现靶场光电经纬仪外引导数据的实时平滑,确保外引导数据驱动下光电经纬仪稳定获取图像,提出基于动态门限的野值处理算法和基于自适应插值的处理算法。对于外引导数据中的野值,提出一种利用影响函数动态计算样本方差的方式,构建动... 为了实现靶场光电经纬仪外引导数据的实时平滑,确保外引导数据驱动下光电经纬仪稳定获取图像,提出基于动态门限的野值处理算法和基于自适应插值的处理算法。对于外引导数据中的野值,提出一种利用影响函数动态计算样本方差的方式,构建动态判别门限实时完成野值的处理;对于外引导数据的插值处理,判断插值计算的连贯性,并将外引导的“卡顿”数据进行分类,采取不同的策略实时自适应插值。实验结果表明:基于动态门限的五点外推野值剔除方法,野值检测率平均在80%以上,同时虚警率较低;插值处理算法能同时应对卡顿与非卡顿的外引导数据,处理结果平滑连贯。算法已成功应用于海军某观测站的光电经纬仪,满足了靶场弹道测量系统的需要。 展开更多
关键词 光电经纬仪 靶场测控 外引导数据 野值判别 插值算法
在线阅读 下载PDF
面向高维流数据的离群值检测算法
19
作者 梁昌好 童英华 冯忠岭 《计算机工程与设计》 北大核心 2024年第5期1406-1412,共7页
累计局部离群因子(cumulative local outlier factor,C_LOF)算法能有效解决数据流中的概念漂移问题和克服离群点检测中的伪装问题,但在处理高维数据时,时间复杂度较高。为有效解决时间复杂度高的问题,提出一种基于投影索引近邻的累计局... 累计局部离群因子(cumulative local outlier factor,C_LOF)算法能有效解决数据流中的概念漂移问题和克服离群点检测中的伪装问题,但在处理高维数据时,时间复杂度较高。为有效解决时间复杂度高的问题,提出一种基于投影索引近邻的累计局部离群因子(cumulative local outlier factor based projection indexed nearest neighbor,PINN_C_LOF)算法。使用滑动窗口维护活跃数据点,在新数据到达和旧数据过期时,引入投影索引近邻(projection indexed nearest neighbor,PINN)方法,增量更新窗口中受影响数据点的近邻。实验结果表明,PINN_C_LOF算法在检测高维流数据离群值时,在保持检测精确度的前提下,其时间复杂度较C_LOF算法明显降低。 展开更多
关键词 高维流数据 离群值检测 累计局部离群因子 时间复杂度 投影索引近邻 局部离群因子 物联网
在线阅读 下载PDF
基于孤立森林的多离群点数据检测算法设计 被引量:3
20
作者 李加军 《现代电子技术》 北大核心 2024年第5期139-142,共4页
精准找出异常离群数据有利于确保大规模数据在应用中的精确度,为此,设计了基于孤立森林的多离群点数据检测算法。首先,采用近似符号聚合算法处理大规模数据的多条件时间序列,再通过计算欧氏距离分析多条件时间序列的相似度,而后采用加... 精准找出异常离群数据有利于确保大规模数据在应用中的精确度,为此,设计了基于孤立森林的多离群点数据检测算法。首先,采用近似符号聚合算法处理大规模数据的多条件时间序列,再通过计算欧氏距离分析多条件时间序列的相似度,而后采用加权调整法调整相似曲线,剔除其中的异常数据,完成对大规模数据的清洗;利用清洗后的数据构建孤立树形成孤立森林,将待检测数据作为孤立森林的输入量,通过计算数据样本点到每棵树根节点的距离,实现对离群点数据的检测。实验结果表明:该算法能够有效地检测出离群点数据,在针对大规模数据离群点的检测时,检测结果精确度较高。 展开更多
关键词 孤立树 孤立森林 离群点 大规模数据 异常检测 相似度测量 数据清洗 时间序列
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部