The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces...The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces were measured directly by atomic force microscopy (AFM) based on the bending mode of the nominal constant compliance regime in AFM force curve in the present study. Surface and solid-liquid interfacial energies were calculated to explain the forming mechanism of the hydration film and atomic force microscopy data. The results show that there are significant differences in the structure and thickness of hydration films on coal and mica surfaces. Hydration film formed on mica surface with the thickness of 22.5 nm. In contrast, the bend was not detected in the nominal constant compliance regime. The van der Waals and polar interactions between both mica and coal and water molecules are characterized by an attractive effect, while the polar attractive free energy between water and mica (-87.36 mN/m) is significantly larger than that between water and coal (-32.89 mN/m), which leads to a thicker and firmer hydration layer on the mica surface. The interfacial interaction free energy of the coal/water/bubble is greater than that of mica. The polar attractive force is large enough to overcome the repulsive van der Waals force and the low energy barrier of film rupture, achieving coal particle bubble adhesion with a total interfacial free energy of-56.30 mN/m.展开更多
The interaction between a flotation reagent and mineral surface not only depends on the bonding atom, but also depends on the adjacent atom of mineral surface, a flotation reagent and the medium in the system of flota...The interaction between a flotation reagent and mineral surface not only depends on the bonding atom, but also depends on the adjacent atom of mineral surface, a flotation reagent and the medium in the system of flotation. Energy equation of a reagent interacting with mineral surface has been deduced from this model. Results of the studies indicate that the interaction energy between mineral surface and a reagent is about several dozen kJ/mol, and the relationship between adsorbing concentration of xanthate on mineral surface and interaction energy is the exponent form.展开更多
Based on the interface shear tests,the macro-and meso-mechanical behaviors of interaction between coral sand and different structure surfaces are studied,in which CCD camera is used to capture digital images to analyz...Based on the interface shear tests,the macro-and meso-mechanical behaviors of interaction between coral sand and different structure surfaces are studied,in which CCD camera is used to capture digital images to analyze the evolution of the interaction band and a particle analysis apparatus is applied to studying the distribution characteristics of particle morphology.This study proposes four-stage evolution process based on the shear stress−strain curve.During the shear process,coral sand particles slide and rotate within the interaction band,causing the changes in shear stress and vertical displacement.In addition,the effects of structure surface roughness on shear strength,volume change and particle breakage are illustrated that the greater the roughness of slabs is,the larger the shear stress is,the more obvious the contraction effect is and the more the particles break.Furthermore,the change in particle’s 3D morphology during the breakage will change not only their size but also other morphological characteristics with convergence and self-organization.展开更多
The dynamics of the scattering processes of diatomic molecules from metal surfaces has been studied with different theoretical approaches. Modified LEPS (London-Eyring-Polanyi-Sato) potential surfaces for several diat...The dynamics of the scattering processes of diatomic molecules from metal surfaces has been studied with different theoretical approaches. Modified LEPS (London-Eyring-Polanyi-Sato) potential surfaces for several diatomie molecule-surface systems have been constructed and examined for the dynamic study. The surfaces are treated as rigid but corrugated. The potential parameters are adjusted to produce reliable potential hypersurfaces. Molecular dissociation, diffraction, adsorption and consequent desorption in the scattering processes have been observed through quasiclassieal trajectory calculations. The significance of the effective corrugation of the potential surfaces has been evaluated in calculating the dissociation and adsorption probabilities. Vibration-rotation-translation energy transfer in the inelastic scattering is investigated to understand the mechanism of selective adsorptions mediated through vibrational or rotational degrees of freedom. We have carried out quantum mechanical calculations to obtain the rotational and vibrational transition probabilities. Relative importance of rotational and vibrational transitions for each adsorbed state with respect to incidence energy has been carefully examined to determine the dominant factor which causes the adsorbed state. The results show that vibration mediation is an essential factor to the selective adsorption especially in the ease of higher incidence energies.展开更多
There are many parameters influencing mining induced surface subsidence. These parameters usually interact with one another and some of them have the characteristic of fuzziness. Current approaches to predicting the s...There are many parameters influencing mining induced surface subsidence. These parameters usually interact with one another and some of them have the characteristic of fuzziness. Current approaches to predicting the subsidence cannot take into account of such interactions and fuzziness. In order to overcome this disadvantage, many mining induced surface subsidence cases were accumulated, and an artificial neuro fuzzy inference system(ANFIS) was used to set up 4 ANFIS models to predict the rise angle, dip angle, center angle and the maximum subsidence, respectively. The fitting and generalization prediction capabilities of the models were tested. The test results show that the models have very good fitting and generalization prediction capabilities and the approach can be applied to predict the mining induced surface subsidence.展开更多
基金Project(2014BAB01B03)supported by the National Key Technology R&D Program During the 12th Five-Yean Plan of ChinaProject(51774286)supported by the National Natural Science Foundation of ChinaProject(BK20150192)supported by the Natural Science Foundation of Jiaaagsu Province,China
文摘The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces were measured directly by atomic force microscopy (AFM) based on the bending mode of the nominal constant compliance regime in AFM force curve in the present study. Surface and solid-liquid interfacial energies were calculated to explain the forming mechanism of the hydration film and atomic force microscopy data. The results show that there are significant differences in the structure and thickness of hydration films on coal and mica surfaces. Hydration film formed on mica surface with the thickness of 22.5 nm. In contrast, the bend was not detected in the nominal constant compliance regime. The van der Waals and polar interactions between both mica and coal and water molecules are characterized by an attractive effect, while the polar attractive free energy between water and mica (-87.36 mN/m) is significantly larger than that between water and coal (-32.89 mN/m), which leads to a thicker and firmer hydration layer on the mica surface. The interfacial interaction free energy of the coal/water/bubble is greater than that of mica. The polar attractive force is large enough to overcome the repulsive van der Waals force and the low energy barrier of film rupture, achieving coal particle bubble adhesion with a total interfacial free energy of-56.30 mN/m.
文摘The interaction between a flotation reagent and mineral surface not only depends on the bonding atom, but also depends on the adjacent atom of mineral surface, a flotation reagent and the medium in the system of flotation. Energy equation of a reagent interacting with mineral surface has been deduced from this model. Results of the studies indicate that the interaction energy between mineral surface and a reagent is about several dozen kJ/mol, and the relationship between adsorbing concentration of xanthate on mineral surface and interaction energy is the exponent form.
基金Project(2017YFC0805406)supported by the National Key Research and Development Program of ChinaProjects(51879142,51679123)supported by the National Natural Science Foundation of ChinaProject(2020-KY-04)supported by the Research Fund Program of the State Key Laboratory of Hydroscience and Engineering,China。
文摘Based on the interface shear tests,the macro-and meso-mechanical behaviors of interaction between coral sand and different structure surfaces are studied,in which CCD camera is used to capture digital images to analyze the evolution of the interaction band and a particle analysis apparatus is applied to studying the distribution characteristics of particle morphology.This study proposes four-stage evolution process based on the shear stress−strain curve.During the shear process,coral sand particles slide and rotate within the interaction band,causing the changes in shear stress and vertical displacement.In addition,the effects of structure surface roughness on shear strength,volume change and particle breakage are illustrated that the greater the roughness of slabs is,the larger the shear stress is,the more obvious the contraction effect is and the more the particles break.Furthermore,the change in particle’s 3D morphology during the breakage will change not only their size but also other morphological characteristics with convergence and self-organization.
基金The projcct supportcd by National Natural Science Foundation of China
文摘The dynamics of the scattering processes of diatomic molecules from metal surfaces has been studied with different theoretical approaches. Modified LEPS (London-Eyring-Polanyi-Sato) potential surfaces for several diatomie molecule-surface systems have been constructed and examined for the dynamic study. The surfaces are treated as rigid but corrugated. The potential parameters are adjusted to produce reliable potential hypersurfaces. Molecular dissociation, diffraction, adsorption and consequent desorption in the scattering processes have been observed through quasiclassieal trajectory calculations. The significance of the effective corrugation of the potential surfaces has been evaluated in calculating the dissociation and adsorption probabilities. Vibration-rotation-translation energy transfer in the inelastic scattering is investigated to understand the mechanism of selective adsorptions mediated through vibrational or rotational degrees of freedom. We have carried out quantum mechanical calculations to obtain the rotational and vibrational transition probabilities. Relative importance of rotational and vibrational transitions for each adsorbed state with respect to incidence energy has been carefully examined to determine the dominant factor which causes the adsorbed state. The results show that vibration mediation is an essential factor to the selective adsorption especially in the ease of higher incidence energies.
基金Project(50274043) supported by the National Natural Science Foundation of China project (01JJY1004) supported bythe Natural Science Foundation of Hunan Province project (01A015) supported by the Natural Science Foundation of Hunan ProvincialEducation Committee
文摘There are many parameters influencing mining induced surface subsidence. These parameters usually interact with one another and some of them have the characteristic of fuzziness. Current approaches to predicting the subsidence cannot take into account of such interactions and fuzziness. In order to overcome this disadvantage, many mining induced surface subsidence cases were accumulated, and an artificial neuro fuzzy inference system(ANFIS) was used to set up 4 ANFIS models to predict the rise angle, dip angle, center angle and the maximum subsidence, respectively. The fitting and generalization prediction capabilities of the models were tested. The test results show that the models have very good fitting and generalization prediction capabilities and the approach can be applied to predict the mining induced surface subsidence.