Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a ...Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a novel slab trackform for high-speed railways is investigated using three-dimensional finite element modelling in Abaqus.It is then compared to the performance of a ballasted track.First,slab and ballasted track models are developed to replicate the full-scale testing of track sections.Once the models are calibrated with the experimental results,the novel slab model is developed and compared against the calibrated slab track results.The slab and ballasted track models are then extended to create linear dynamic models,considering the track geodynamics,and simulating train passages at various speeds,for which the Ledsgard documented case was used to validate the models.Trains travelling at low and high speeds are analysed to investigate the track deflections and the wave propagation in the soil,considering the issues associated with critical speeds.Various train loading methods are discussed,and the most practical approach is retained and described.Moreover,correlations are made between the geotechnical parameters of modern high-speed rail and conventional standards.It is found that considering the same ground condition,the slab track deflections are considerably smaller than those of the ballasted track at high speeds,while they show similar behaviour at low speeds.展开更多
Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant ...Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant threats to SI,among which DDoS attack will intensify the erosion of limited bandwidth resources.Therefore,this paper proposes a DDoS attack tracking scheme using a multi-round iterative Viterbi algorithm to achieve high-accuracy attack path reconstruction and fast internal source locking,protecting SI from the source.Firstly,to reduce communication overhead,the logarithmic representation of the traffic volume is added to the digests after modeling SI,generating the lightweight deviation degree to construct the observation probability matrix for the Viterbi algorithm.Secondly,the path node matrix is expanded to multi-index matrices in the Viterbi algorithm to store index information for all probability values,deriving the path with non-repeatability and maximum probability.Finally,multiple rounds of iterative Viterbi tracking are performed locally to track DDoS attack based on trimming tracking results.Simulation and experimental results show that the scheme can achieve 96.8%tracking accuracy of external and internal DDoS attack at 2.5 seconds,with the communication overhead at 268KB/s,effectively protecting the limited bandwidth resources of SI.展开更多
Track irregularity from rail alternate side wear is manifested as uneven rail wear waveforms alternating in the left and right rails with equal intervals,which will cause carbody sway behaviour of railway vehicles and...Track irregularity from rail alternate side wear is manifested as uneven rail wear waveforms alternating in the left and right rails with equal intervals,which will cause carbody sway behaviour of railway vehicles and greatly influences the passenger comfort.In this work,the carbody sway behaviour and mechanism due to track irregularity from rail alternate side wear and possible solutions to this issue were studied by the field testing and numerical calculation approaches.First,the carbody sway of an urban rail transit train is introduced with full-scale field tests,through which the rail alternate side wear is characterized and the formatted track irregularity are presented.Then,multibody vehicle dynamic models are developed to reproduce the carbody sway behaviour induced by the track irregularity from the rail alternate side wear.The creep forces acting on the wheel and rail are preliminarily discussed to study the influence of the carbody sway on the wear of the wheel flange and the rail corner.Finally,some potential solutions,e.g.improving the damping ratio of carbody rigid mode and rail grinding,are proposed to relieve this issue.It is concluded that an increased damping ratio of the carbody mode can alleviate the carbody sway and wheel–rail interactions,while properly maintaining track conditions can improve the vehicle performance.展开更多
Using traditional particle tracking velocimetry based on optical flow for measuring areas with large velocity gradient changes may cause oversmoothing,resulting in significant measurement errors.To address this proble...Using traditional particle tracking velocimetry based on optical flow for measuring areas with large velocity gradient changes may cause oversmoothing,resulting in significant measurement errors.To address this problem,the traditional particle tracking velocimetry method based on an optical flow was improved.The level set segmentation algorithm was used to obtain the boundary contour of the region with large velocity gradient changes,and the non-uniform flow field was divided into regions according to the boundary contour to obtain sub-regions with uniform velocity distribution.The particle tracking velocimetry method based on optical flow was used to measure the granular flow velocity in each sub-region,thus avoiding the problem of granular flow distribution.The simulation results show that the measurement accuracy of this method is approximately 10%higher than that of traditional methods.The method was applied to a velocity measurement experiment on dense granular flow in silos,and the velocity distribution of the granular flow was obtained,verifying the practicality of the method in granular flow fields.展开更多
The design theories of the ballastless track in the world are reviewed in comparison with the innovative research achievements of high-speed railway ballastless track in China.The calculation methods and parameters co...The design theories of the ballastless track in the world are reviewed in comparison with the innovative research achievements of high-speed railway ballastless track in China.The calculation methods and parameters concerning train load,thermal effect,and foundation deformation of high-speed railway ballastless track,together with the structural design methods are summarized.Finally,some suggestions on the future work are provided.展开更多
The effect of the fastener's failure in a railway track on the dynamic forces produced in the wheel-rail contact is studied using the simulation software VAMPIRE to assess the derailment risk of two different vehicle...The effect of the fastener's failure in a railway track on the dynamic forces produced in the wheel-rail contact is studied using the simulation software VAMPIRE to assess the derailment risk of two different vehicles in two curves with distinct characteristics. First, a 3D-FEM model of a real track is constructed, paying special attention to fasteners, and calibrated with displacement data obtained experimentally during a train passage. This numerical model is subsequently used to determine the track vertical and lateral stiffness. This study evidences that although the track can practically lose its lateral stiffness as a consequence of the failure of 7 consecutive fasteners, the vehicle stability would not be necessarily compromised in the flawed zone. Moreover, the results reveal that the uncompensated acceleration and the distance along which the fasteners are failed play an important role in the dynamic behavior of the vehicle-track system, influencing strongly the risk of derailment.展开更多
This paper analyses the central female character Fleur in Erdrich's novel Tracks.It discusses her mysterious power and abilities to save her family and land,challenging the White mainstream culture on the reservat...This paper analyses the central female character Fleur in Erdrich's novel Tracks.It discusses her mysterious power and abilities to save her family and land,challenging the White mainstream culture on the reservation.Unlike Pauline goes to extremes and converts herself into a Catholic believer,Fleur holds fast to the old Chippewa way and acts by her own will both as a powerful Chippewa woman,Indian traditionals defender and a great mother.展开更多
The rapid growth in railway infrastructure and the construction of high-speed heavy-haul rail network,especially on ground that is basically unsuitable,poses challenges for geotechnical engineers because a large part ...The rapid growth in railway infrastructure and the construction of high-speed heavy-haul rail network,especially on ground that is basically unsuitable,poses challenges for geotechnical engineers because a large part of the money invested in the development of railway lines is often spent on track maintenance.In fact around the world,the mud pumping of subgrade fines is one of the common reasons why track performance deteriorates and track stability is hindered.This article presents a series of laboratory tests to examine following aspects of mud pumping:(1)the mechanisms of subgrade fluidisation under undrained condition,(2)the effects of mud pumping on the engineering characteristics of ballast,and(3)the use of vertical drains to stabilize subgrade under cyclic loads.The undrained cyclic triaxial testing on vulnerable soft subgrade was performed by varying the cyclic stress ratio(CSR)from 0.2 to 1.0 and the loading frequency f from 1.0 to 5.0 Hz.It is seen from the test results that for a specimen compacted at an initial dry density of 1790 kg/m3,the top portion of the specimen fluidises at CSR=0.5,irrespective of the applied loading frequency.Under cyclic railway loading,the internal redistribution of water at the top of the subgrade layer softens the soil and also reduces its stiffness.In response to these problems,this paper explains how the inclusion of vertical drains in soft subgrade will help to prevent mud pumping by alleviating the build-up of excess pore pressures under moving train loads.展开更多
Imaging plates are widely used to detect alpha particles to track information,and the number of alpha particle tracks is affected by the overlapping and fading effects of the track information.In this study,an experim...Imaging plates are widely used to detect alpha particles to track information,and the number of alpha particle tracks is affected by the overlapping and fading effects of the track information.In this study,an experiment and a simulation were used to calibrate the efficiency parameter of an imaging plate,which was used to calculate the grayscale.Images were created by using grayscale,which trained the convolutional neural network to count the alpha tracks.The results demonstrated that the trained convolutional neural network can evaluate the alpha track counts based on the source and background images with a wider linear range,which was unaffected by the overlapping effect.The alpha track counts were unaffected by the fading effect within 60 min,where the calibrated formula for the fading effect was analyzed for 132.7 min.The detection efficiency of the trained convolutional neural network for inhomogeneous ^(241)Am sources(2π emission)was 0.6050±0.0399,whereas the efficiency curve of the photo-stimulated luminescence method was lower than that of the trained convolutional neural network.展开更多
Stress concentration occurs in the foundations of railway tracks where discontinuous components are located.The exacerbated stress under the expansion joints in slab tracks may trigger foundation failures such as mud ...Stress concentration occurs in the foundations of railway tracks where discontinuous components are located.The exacerbated stress under the expansion joints in slab tracks may trigger foundation failures such as mud pumping.Although the higher stress due to the discontinuities of track structures has been discussed in past studies,few focused on the stress response of roadbeds in slab tracks and quantitatively characterized the stress pattern.In this paper,we performed a dynamic finite element analysis of a track-formation system,incorporating expansion joints as primary longitudinal discontinuities.The configurations of CRTS Ⅲ slab tracks and the contact conditions between concrete layers were considered.Numerical results show that longitudinal influencing length of induced stress on roadbed under wheel load relates to the contact conditions between concrete layers,increasing nonlinearly at a larger coefficient of friction.Given a measured coefficient of friction of 0.7,the calculated longitudinal influencing length(9.0 m) matches with field data.The longitudinal influencing length is not affected with the increasing velocity.As stress concentration arises with expansion joints,the worstcase scenario emerges when double-axle loads are exerted immediately above the expansion joints between concrete bases.A stress concentration factor Cvon the roadbed is proposed;it increases with the increasing velocity,changing from 1.33 to 1.52 at velocities between 5 and 400 km/h.The stress distribution on roadbeds transforms from a trapezoid pattern at continuous sections to a triangle pattern at points with longitudinal discontinuities.An explicit expression is finally proposed for the stress pattern on roadbed under expansion joints.Although structural discontinuities induce stress raiser,the extent of concentration is mitigated with increasing depth at different velocity levels.展开更多
For accurate counting of alpha tracks on the polyallyl diglycol carbonate of CR-39-type track detectors,the size distributions of both artifact tracks and alpha tracks were investigated with an automatic counting syst...For accurate counting of alpha tracks on the polyallyl diglycol carbonate of CR-39-type track detectors,the size distributions of both artifact tracks and alpha tracks were investigated with an automatic counting system. At the same temperature and etchant concentration, the numbers and sizes of alpha tracks changed significantly with the etching time, and the artifact track changes were smaller. At the etching time of 5 h, the sizes of alpha tracks were evidently larger than those of the artifact tracks, and the deviation of its size distribution was much smaller than those of longer etching time. Based on the size distribution of alpha tracks etched for 5 h, the overlap effect and uncertainty of overlap correction were studied by the Monte Carlo simulations for different track densities. It was found that the counting uncertainty of the system could be less than 6% in a density range of 10–160 tracks mm^(-2) after taking the overlap correction into account.展开更多
Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short tr...Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short transmission range communication because of the serious free space path loss and the blockage by obstacles.To overcome these challenges,highly directional beams are exploited to achieve robust links by hybrid beamforming.Accurately aligning the transmitter and receiver beams,i.e.beam training,is vitally important to high data rate transmission.However,it may cause huge overhead which has negative effects on initial access,handover,and tracking.Besides,the mobility patterns of users are complicated and dynamic,which may cause tracking error and large tracking latency.An efficient beam tracking method has a positive effect on sustaining robust links.This article provides an overview of the beam training and tracking technologies on mmWave bands and reveals the insights for future research in the 6th Generation(6G)mobile network.Especially,some open research problems are proposed to realize fast,accurate,and robust beam training and tracking.We hope that this survey provides guidelines for the researchers in the area of mmWave communications.展开更多
In areas with large temperature differences,the uneven distribution of temperatures in the CRTS III ballastless track slab due to daytime sunlight can cause warpage deformation,leading to periodic rail irregularities ...In areas with large temperature differences,the uneven distribution of temperatures in the CRTS III ballastless track slab due to daytime sunlight can cause warpage deformation,leading to periodic rail irregularities that increase the wheel-rail impact of high-speed vehicles and accelerate track structure damage.Therefore,it is necessary to study the dynamic contact relationship between the composite slab and the base plate during vehicle running.The results of the study show that:1)Under the influence of temperature gradients,the composite slab tends to deform elliptically.With a positive temperature gradient,the middle part of the track slab bulges upward,causing the slab to be supported by its four corners.Conversely,with a negative temperature gradient,the four corners of the track slab bulge upward,resulting in the slab being supported by its center.2)Temperature gradients can lead to separation between the composite slab and the base plate,reducing the contact area between layers.During vehicle running,the contact area between layers gradually increases,but the separation cannot be completely closed.3)The temperature gradient significantly affects the vertical displacement of the track.The vertical displacement in the middle of the slab increases with a positive temperature gradient.In contrast,the vertical displacement at the ends of the slab increases with a negative temperature gradient.4)The stress of self-compacting concrete at the side position significantly increases under a positive temperature gradient,with the vertical stress increasing by 2.7 times when the temperature gradient increases from 0 to 90℃·m^(-1).展开更多
The various morphologies of tracks in MoS2 irradiated by swift heavy ions at normal and 30° incidence with 9.5–25.0 MeV/u 86Kr, 129Xe, 181Ta, and 209Bi ions were investigated by transmission electron microscopy....The various morphologies of tracks in MoS2 irradiated by swift heavy ions at normal and 30° incidence with 9.5–25.0 MeV/u 86Kr, 129Xe, 181Ta, and 209Bi ions were investigated by transmission electron microscopy. The diameter of ion tracks increases from 1.9 nm to 4.5 nm with increasing electronic energy loss. The energy loss threshold of the track formation in MoS2 is predicted as about 9.7 keV/nm based on the thermal spike model and it seems consistent with the experimental results. It is shown that the morphology of ion tracks is related to the penetration length of ions in MoS2. The formation process of ion tracks is discussed based on the cooperative process of outflow and recrystallization of the molten phase during rapid quenching.展开更多
The radial distribution of dose around the path of a hemp ion has been studied by a Monte Carlo transport analysis of the delta rays produced along the track of a heavy ion based on classical binary collision dynamics...The radial distribution of dose around the path of a hemp ion has been studied by a Monte Carlo transport analysis of the delta rays produced along the track of a heavy ion based on classical binary collision dynamics and a single scattering model for the electron transport process. Result comparisons among this work and semi-empirical expression based delta ray theory of track structure, as well as other Monte Carlo calculations are made for 1, 3 MeV protons and several heavy ions. The results of the Monte Carlo simulations for energetic heavy ions are in agreement with experimental data and with results of different methods. The characteristic of this Monte Carlo calculation is a simulation of the delta rays theory of track structure.展开更多
The CRTS Ⅱ slab track, which is connected in a longitudinal direction, is one of the main ballastless tracks in China, with approximately 7365 km of operational track. Temperature loading is a very vital factor leadi...The CRTS Ⅱ slab track, which is connected in a longitudinal direction, is one of the main ballastless tracks in China, with approximately 7365 km of operational track. Temperature loading is a very vital factor leading to slab track damages such as warping and cracking. While existing research on temperature distribution rests on either site tests in special environments or theoretical analysis, the long-term temperature field characteristics are not clear. Therefore, a long-term temperature field test for the CRTS Ⅱ slab track on bridge-subgrade transition section was conducted to analyze the temperature field. A GA-BP(genetic algorithm optimized back propagation) neural network was trained on the test data to predict the temperature field. The vertical and lateral temperature distributions in four typical days were carried out. We found that the temperature along the track was distributed in a nonlinear manner. This was particularly distinct in the vertical direction for depths of less than 300 mm. The highest and lowest daily temperatures and the daily range of the temperature were analyzed. With the increasing depth, the daily highest temperatures and range of the temperature were smaller, the daily lowest temperatures were higher, and the time corresponding to this peak value appeared later in the day. Both the highest and lowest daily temperature could be predicted using the GA-BP neural network, though the accuracy in predicting the highest temperature was higher than that in predicting the lowest temperature.展开更多
A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filte...A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.展开更多
基金Engineering and Physical Sciences Research Council (EPSRC) is also acknowledged for funding this work under Grant Number EP/N009207/1.
文摘Concrete slabs are widely used in modern railways to increase the inherent resilient quality of the tracks,provide safe and smooth rides,and reduce the maintenance frequency.In this paper,the elastic performance of a novel slab trackform for high-speed railways is investigated using three-dimensional finite element modelling in Abaqus.It is then compared to the performance of a ballasted track.First,slab and ballasted track models are developed to replicate the full-scale testing of track sections.Once the models are calibrated with the experimental results,the novel slab model is developed and compared against the calibrated slab track results.The slab and ballasted track models are then extended to create linear dynamic models,considering the track geodynamics,and simulating train passages at various speeds,for which the Ledsgard documented case was used to validate the models.Trains travelling at low and high speeds are analysed to investigate the track deflections and the wave propagation in the soil,considering the issues associated with critical speeds.Various train loading methods are discussed,and the most practical approach is retained and described.Moreover,correlations are made between the geotechnical parameters of modern high-speed rail and conventional standards.It is found that considering the same ground condition,the slab track deflections are considerably smaller than those of the ballasted track at high speeds,while they show similar behaviour at low speeds.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1005000)the National Natural Science Foundation of China(Grant No.62025110 and 62101308).
文摘Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant threats to SI,among which DDoS attack will intensify the erosion of limited bandwidth resources.Therefore,this paper proposes a DDoS attack tracking scheme using a multi-round iterative Viterbi algorithm to achieve high-accuracy attack path reconstruction and fast internal source locking,protecting SI from the source.Firstly,to reduce communication overhead,the logarithmic representation of the traffic volume is added to the digests after modeling SI,generating the lightweight deviation degree to construct the observation probability matrix for the Viterbi algorithm.Secondly,the path node matrix is expanded to multi-index matrices in the Viterbi algorithm to store index information for all probability values,deriving the path with non-repeatability and maximum probability.Finally,multiple rounds of iterative Viterbi tracking are performed locally to track DDoS attack based on trimming tracking results.Simulation and experimental results show that the scheme can achieve 96.8%tracking accuracy of external and internal DDoS attack at 2.5 seconds,with the communication overhead at 268KB/s,effectively protecting the limited bandwidth resources of SI.
基金supported by the National Natural Science Foundation of China(Grant Nos.52002344,U2034210,and 61960206010)the Development Project of State Key Laboratory of Rail Transit Vehicle System(Grant No.2022TPL_T09)。
文摘Track irregularity from rail alternate side wear is manifested as uneven rail wear waveforms alternating in the left and right rails with equal intervals,which will cause carbody sway behaviour of railway vehicles and greatly influences the passenger comfort.In this work,the carbody sway behaviour and mechanism due to track irregularity from rail alternate side wear and possible solutions to this issue were studied by the field testing and numerical calculation approaches.First,the carbody sway of an urban rail transit train is introduced with full-scale field tests,through which the rail alternate side wear is characterized and the formatted track irregularity are presented.Then,multibody vehicle dynamic models are developed to reproduce the carbody sway behaviour induced by the track irregularity from the rail alternate side wear.The creep forces acting on the wheel and rail are preliminarily discussed to study the influence of the carbody sway on the wear of the wheel flange and the rail corner.Finally,some potential solutions,e.g.improving the damping ratio of carbody rigid mode and rail grinding,are proposed to relieve this issue.It is concluded that an increased damping ratio of the carbody mode can alleviate the carbody sway and wheel–rail interactions,while properly maintaining track conditions can improve the vehicle performance.
文摘Using traditional particle tracking velocimetry based on optical flow for measuring areas with large velocity gradient changes may cause oversmoothing,resulting in significant measurement errors.To address this problem,the traditional particle tracking velocimetry method based on an optical flow was improved.The level set segmentation algorithm was used to obtain the boundary contour of the region with large velocity gradient changes,and the non-uniform flow field was divided into regions according to the boundary contour to obtain sub-regions with uniform velocity distribution.The particle tracking velocimetry method based on optical flow was used to measure the granular flow velocity in each sub-region,thus avoiding the problem of granular flow distribution.The simulation results show that the measurement accuracy of this method is approximately 10%higher than that of traditional methods.The method was applied to a velocity measurement experiment on dense granular flow in silos,and the velocity distribution of the granular flow was obtained,verifying the practicality of the method in granular flow fields.
基金supported by the National Natural Science Foundation of China (No. 51008258)the Fundamental Research Funds for the Central Universities (No. SWJTU09BR038)
文摘The design theories of the ballastless track in the world are reviewed in comparison with the innovative research achievements of high-speed railway ballastless track in China.The calculation methods and parameters concerning train load,thermal effect,and foundation deformation of high-speed railway ballastless track,together with the structural design methods are summarized.Finally,some suggestions on the future work are provided.
文摘The effect of the fastener's failure in a railway track on the dynamic forces produced in the wheel-rail contact is studied using the simulation software VAMPIRE to assess the derailment risk of two different vehicles in two curves with distinct characteristics. First, a 3D-FEM model of a real track is constructed, paying special attention to fasteners, and calibrated with displacement data obtained experimentally during a train passage. This numerical model is subsequently used to determine the track vertical and lateral stiffness. This study evidences that although the track can practically lose its lateral stiffness as a consequence of the failure of 7 consecutive fasteners, the vehicle stability would not be necessarily compromised in the flawed zone. Moreover, the results reveal that the uncompensated acceleration and the distance along which the fasteners are failed play an important role in the dynamic behavior of the vehicle-track system, influencing strongly the risk of derailment.
文摘This paper analyses the central female character Fleur in Erdrich's novel Tracks.It discusses her mysterious power and abilities to save her family and land,challenging the White mainstream culture on the reservation.Unlike Pauline goes to extremes and converts herself into a Catholic believer,Fleur holds fast to the old Chippewa way and acts by her own will both as a powerful Chippewa woman,Indian traditionals defender and a great mother.
基金This research was supported by the Australian Government through the Australian Research Council’s Linkage Projects funding scheme(Project LP160101254)the Industrial Transformation Training Centre for Advanced Technologies in Rail Track Infrastructure(ITTC),University of WollongongThe financial and technical support from SMEC-Australia and ARTC(Australian Rail Track Corporation)is acknowledged.
文摘The rapid growth in railway infrastructure and the construction of high-speed heavy-haul rail network,especially on ground that is basically unsuitable,poses challenges for geotechnical engineers because a large part of the money invested in the development of railway lines is often spent on track maintenance.In fact around the world,the mud pumping of subgrade fines is one of the common reasons why track performance deteriorates and track stability is hindered.This article presents a series of laboratory tests to examine following aspects of mud pumping:(1)the mechanisms of subgrade fluidisation under undrained condition,(2)the effects of mud pumping on the engineering characteristics of ballast,and(3)the use of vertical drains to stabilize subgrade under cyclic loads.The undrained cyclic triaxial testing on vulnerable soft subgrade was performed by varying the cyclic stress ratio(CSR)from 0.2 to 1.0 and the loading frequency f from 1.0 to 5.0 Hz.It is seen from the test results that for a specimen compacted at an initial dry density of 1790 kg/m3,the top portion of the specimen fluidises at CSR=0.5,irrespective of the applied loading frequency.Under cyclic railway loading,the internal redistribution of water at the top of the subgrade layer softens the soil and also reduces its stiffness.In response to these problems,this paper explains how the inclusion of vertical drains in soft subgrade will help to prevent mud pumping by alleviating the build-up of excess pore pressures under moving train loads.
基金supported by the Hunan Provincial Innovation Foundation for Postgraduates (No.QL20210228)the National Natural Science Foundation of China (No.12075112)the National Natural Science Foundation of China (No.12175102).
文摘Imaging plates are widely used to detect alpha particles to track information,and the number of alpha particle tracks is affected by the overlapping and fading effects of the track information.In this study,an experiment and a simulation were used to calibrate the efficiency parameter of an imaging plate,which was used to calculate the grayscale.Images were created by using grayscale,which trained the convolutional neural network to count the alpha tracks.The results demonstrated that the trained convolutional neural network can evaluate the alpha track counts based on the source and background images with a wider linear range,which was unaffected by the overlapping effect.The alpha track counts were unaffected by the fading effect within 60 min,where the calibrated formula for the fading effect was analyzed for 132.7 min.The detection efficiency of the trained convolutional neural network for inhomogeneous ^(241)Am sources(2π emission)was 0.6050±0.0399,whereas the efficiency curve of the photo-stimulated luminescence method was lower than that of the trained convolutional neural network.
基金This work was supported by the National Natural Science Foundation of China(Nos.41901073 and 52078435)the Sichuan Science and Technology Program(No.2021YJ0001)。
文摘Stress concentration occurs in the foundations of railway tracks where discontinuous components are located.The exacerbated stress under the expansion joints in slab tracks may trigger foundation failures such as mud pumping.Although the higher stress due to the discontinuities of track structures has been discussed in past studies,few focused on the stress response of roadbeds in slab tracks and quantitatively characterized the stress pattern.In this paper,we performed a dynamic finite element analysis of a track-formation system,incorporating expansion joints as primary longitudinal discontinuities.The configurations of CRTS Ⅲ slab tracks and the contact conditions between concrete layers were considered.Numerical results show that longitudinal influencing length of induced stress on roadbed under wheel load relates to the contact conditions between concrete layers,increasing nonlinearly at a larger coefficient of friction.Given a measured coefficient of friction of 0.7,the calculated longitudinal influencing length(9.0 m) matches with field data.The longitudinal influencing length is not affected with the increasing velocity.As stress concentration arises with expansion joints,the worstcase scenario emerges when double-axle loads are exerted immediately above the expansion joints between concrete bases.A stress concentration factor Cvon the roadbed is proposed;it increases with the increasing velocity,changing from 1.33 to 1.52 at velocities between 5 and 400 km/h.The stress distribution on roadbeds transforms from a trapezoid pattern at continuous sections to a triangle pattern at points with longitudinal discontinuities.An explicit expression is finally proposed for the stress pattern on roadbed under expansion joints.Although structural discontinuities induce stress raiser,the extent of concentration is mitigated with increasing depth at different velocity levels.
基金supported by the National Natural Science Foundation of China(No.11375048)
文摘For accurate counting of alpha tracks on the polyallyl diglycol carbonate of CR-39-type track detectors,the size distributions of both artifact tracks and alpha tracks were investigated with an automatic counting system. At the same temperature and etchant concentration, the numbers and sizes of alpha tracks changed significantly with the etching time, and the artifact track changes were smaller. At the etching time of 5 h, the sizes of alpha tracks were evidently larger than those of the artifact tracks, and the deviation of its size distribution was much smaller than those of longer etching time. Based on the size distribution of alpha tracks etched for 5 h, the overlap effect and uncertainty of overlap correction were studied by the Monte Carlo simulations for different track densities. It was found that the counting uncertainty of the system could be less than 6% in a density range of 10–160 tracks mm^(-2) after taking the overlap correction into account.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 92267202in part by the Municipal Government of Quzhou under Grant 2023D027+2 种基金in part by the National Natural Science Foundation of China(NSFC)under Grant 62321001in part by the National Key Research and Development Program of China under Grant 2020YFA0711303in part by the Beijing Natural Science Foundation under Grant Z220004.
文摘Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short transmission range communication because of the serious free space path loss and the blockage by obstacles.To overcome these challenges,highly directional beams are exploited to achieve robust links by hybrid beamforming.Accurately aligning the transmitter and receiver beams,i.e.beam training,is vitally important to high data rate transmission.However,it may cause huge overhead which has negative effects on initial access,handover,and tracking.Besides,the mobility patterns of users are complicated and dynamic,which may cause tracking error and large tracking latency.An efficient beam tracking method has a positive effect on sustaining robust links.This article provides an overview of the beam training and tracking technologies on mmWave bands and reveals the insights for future research in the 6th Generation(6G)mobile network.Especially,some open research problems are proposed to realize fast,accurate,and robust beam training and tracking.We hope that this survey provides guidelines for the researchers in the area of mmWave communications.
基金supported by the National Natural Science Foundation of China(Grant No.52278466)the Project of China Academy of Railway Sciences Co.,Ltd(Grant No.2023YJ194).The useful contribution and discussions from project partners are also acknowledged.
文摘In areas with large temperature differences,the uneven distribution of temperatures in the CRTS III ballastless track slab due to daytime sunlight can cause warpage deformation,leading to periodic rail irregularities that increase the wheel-rail impact of high-speed vehicles and accelerate track structure damage.Therefore,it is necessary to study the dynamic contact relationship between the composite slab and the base plate during vehicle running.The results of the study show that:1)Under the influence of temperature gradients,the composite slab tends to deform elliptically.With a positive temperature gradient,the middle part of the track slab bulges upward,causing the slab to be supported by its four corners.Conversely,with a negative temperature gradient,the four corners of the track slab bulge upward,resulting in the slab being supported by its center.2)Temperature gradients can lead to separation between the composite slab and the base plate,reducing the contact area between layers.During vehicle running,the contact area between layers gradually increases,but the separation cannot be completely closed.3)The temperature gradient significantly affects the vertical displacement of the track.The vertical displacement in the middle of the slab increases with a positive temperature gradient.In contrast,the vertical displacement at the ends of the slab increases with a negative temperature gradient.4)The stress of self-compacting concrete at the side position significantly increases under a positive temperature gradient,with the vertical stress increasing by 2.7 times when the temperature gradient increases from 0 to 90℃·m^(-1).
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11675233,11690041,11405229,11705246,and 11505243)Chinese Academy of Sciences “Light of West China” Programthe Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2020412)。
文摘The various morphologies of tracks in MoS2 irradiated by swift heavy ions at normal and 30° incidence with 9.5–25.0 MeV/u 86Kr, 129Xe, 181Ta, and 209Bi ions were investigated by transmission electron microscopy. The diameter of ion tracks increases from 1.9 nm to 4.5 nm with increasing electronic energy loss. The energy loss threshold of the track formation in MoS2 is predicted as about 9.7 keV/nm based on the thermal spike model and it seems consistent with the experimental results. It is shown that the morphology of ion tracks is related to the penetration length of ions in MoS2. The formation process of ion tracks is discussed based on the cooperative process of outflow and recrystallization of the molten phase during rapid quenching.
文摘The radial distribution of dose around the path of a hemp ion has been studied by a Monte Carlo transport analysis of the delta rays produced along the track of a heavy ion based on classical binary collision dynamics and a single scattering model for the electron transport process. Result comparisons among this work and semi-empirical expression based delta ray theory of track structure, as well as other Monte Carlo calculations are made for 1, 3 MeV protons and several heavy ions. The results of the Monte Carlo simulations for energetic heavy ions are in agreement with experimental data and with results of different methods. The characteristic of this Monte Carlo calculation is a simulation of the delta rays theory of track structure.
基金This work was supported by the National Key Research and Development Program of China(Nos.2021YFB2601000,2021YFF0502100)the National Natural Science Foundation of China(No.52208415)the Natural Science Foundation of Shaanxi Province,China(Nos.2021JQ-255,2022JQ-303).
文摘The CRTS Ⅱ slab track, which is connected in a longitudinal direction, is one of the main ballastless tracks in China, with approximately 7365 km of operational track. Temperature loading is a very vital factor leading to slab track damages such as warping and cracking. While existing research on temperature distribution rests on either site tests in special environments or theoretical analysis, the long-term temperature field characteristics are not clear. Therefore, a long-term temperature field test for the CRTS Ⅱ slab track on bridge-subgrade transition section was conducted to analyze the temperature field. A GA-BP(genetic algorithm optimized back propagation) neural network was trained on the test data to predict the temperature field. The vertical and lateral temperature distributions in four typical days were carried out. We found that the temperature along the track was distributed in a nonlinear manner. This was particularly distinct in the vertical direction for depths of less than 300 mm. The highest and lowest daily temperatures and the daily range of the temperature were analyzed. With the increasing depth, the daily highest temperatures and range of the temperature were smaller, the daily lowest temperatures were higher, and the time corresponding to this peak value appeared later in the day. Both the highest and lowest daily temperature could be predicted using the GA-BP neural network, though the accuracy in predicting the highest temperature was higher than that in predicting the lowest temperature.
基金supported by National Natural Science Foundation of China (Nos.62265010,62061024)Gansu Province Science and Technology Plan (No.23YFGA0062)Gansu Province Innovation Fund (No.2022A-215)。
文摘A wireless sensor network mobile target tracking algorithm(ISO-EKF)based on improved snake optimization algorithm(ISO)is proposed to address the difficulty of estimating initial values when using extended Kalman filtering to solve the state of nonlinear mobile target tracking.First,the steps of extended Kalman filtering(EKF)are introduced.Second,the ISO is used to adjust the parameters of the EKF in real time to adapt to the current motion state of the mobile target.Finally,the effectiveness of the algorithm is demonstrated through filtering and tracking using the constant velocity circular motion model(CM).Under the specified conditions,the position and velocity mean square error curves are compared among the snake optimizer(SO)-EKF algorithm,EKF algorithm,and the proposed algorithm.The comparison shows that the proposed algorithm reduces the root mean square error of position by 52%and 41%compared to the SOEKF algorithm and EKF algorithm,respectively.