The transverse momentum distributions of the identified particles produced in small collision systems at the Relativistic Heavy Ion Collider(RHIC) and Large Hadron Collider(LHC) have been analyzed by four models. The ...The transverse momentum distributions of the identified particles produced in small collision systems at the Relativistic Heavy Ion Collider(RHIC) and Large Hadron Collider(LHC) have been analyzed by four models. The first two models utilize the blast-wave model with different statistics. The last two models employ certain linear correspondences based on different distributions.The four models describe the experimental data measured by the Pioneering High Energy Nuclear Interaction eXperiment, Solenoidal Tracker at RHIC, and A Large Ion Collider Experiment collaborations equally well. It is found that both the kinetic freeze-out temperature and transverse flow velocity in the central collisions are comparable with those in the peripheral collisions. With the increase of collision energy from that of the RHIC to that of the LHC,the considered quantities typically do not decrease. Comparing with the central collisions, the proton–proton collisions are closer to the peripheral collisions.展开更多
The effects of out-of-plane shear flows on fast magnetic reconnection are numerically investigated by a two- dimensional (2D) hybrid model in an initial Harris sheet equilibrium with flows. The equilibrium and drive...The effects of out-of-plane shear flows on fast magnetic reconnection are numerically investigated by a two- dimensional (2D) hybrid model in an initial Harris sheet equilibrium with flows. The equilibrium and driven shear flows out of the 2D reconnection plane with symmetric and antisymmetric profiles respectively are used in the simulation. It is found that the out-of-plane flows with shears in-plane can change the quadrupolar structure of the out-of-plane magnetic field and, therefore, modify the growth rate of magnetic reconnection. Furthermore, the driven flow varying along the anti-parallel magnetic field can either enhance or reduce the reconnection rate as the direction of flow changes. Secondary islands are also generated in the process with converting the initial X-point into an O-point.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11575103 and 11747319)the Shanxi Provincial Natural Science Foundation(No.201701D121005)+1 种基金the Fund for Shanxi ‘‘1331 Project’’ Key Subjects Constructionthe US DOE(DE-FG02-87ER40331.A008)
文摘The transverse momentum distributions of the identified particles produced in small collision systems at the Relativistic Heavy Ion Collider(RHIC) and Large Hadron Collider(LHC) have been analyzed by four models. The first two models utilize the blast-wave model with different statistics. The last two models employ certain linear correspondences based on different distributions.The four models describe the experimental data measured by the Pioneering High Energy Nuclear Interaction eXperiment, Solenoidal Tracker at RHIC, and A Large Ion Collider Experiment collaborations equally well. It is found that both the kinetic freeze-out temperature and transverse flow velocity in the central collisions are comparable with those in the peripheral collisions. With the increase of collision energy from that of the RHIC to that of the LHC,the considered quantities typically do not decrease. Comparing with the central collisions, the proton–proton collisions are closer to the peripheral collisions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10935004,1126114032,10778613,10575018,40731056,10975012,and 11261140326)
文摘The effects of out-of-plane shear flows on fast magnetic reconnection are numerically investigated by a two- dimensional (2D) hybrid model in an initial Harris sheet equilibrium with flows. The equilibrium and driven shear flows out of the 2D reconnection plane with symmetric and antisymmetric profiles respectively are used in the simulation. It is found that the out-of-plane flows with shears in-plane can change the quadrupolar structure of the out-of-plane magnetic field and, therefore, modify the growth rate of magnetic reconnection. Furthermore, the driven flow varying along the anti-parallel magnetic field can either enhance or reduce the reconnection rate as the direction of flow changes. Secondary islands are also generated in the process with converting the initial X-point into an O-point.