期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
GLEASON'S PROBLEM ON THE SPACE F^(p,q,s)(B) IN C^(n)
1
作者 Pengcheng TANG Xuejun ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2022年第5期1971-1980,共10页
Let Ω be a domain in C^(n) and let Y be a function space on Ω.If a∈Ω and g∈Y with g(a)=0,do there exist functions f_(1),f_(2),…,f_(n)∈Y such that g(z)=∑_(l=1)^(n)(z_(l)−a_(l))f_(l)(z)for all z=(z_(1),z_(2),…,... Let Ω be a domain in C^(n) and let Y be a function space on Ω.If a∈Ω and g∈Y with g(a)=0,do there exist functions f_(1),f_(2),…,f_(n)∈Y such that g(z)=∑_(l=1)^(n)(z_(l)−a_(l))f_(l)(z)for all z=(z_(1),z_(2),…,z_(n))∈Ω?This is Gleason’s problem.In this paper,we prove that Gleason’s problem is solvable on the boundary general function space F^(p,q,s)(B)in the unit ball B of C^(n). 展开更多
关键词 oundary general function space Gleason's problem SOLVABILITY unit ball
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部