Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer eff...Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.展开更多
In this paper three important characteristics in piezoresistance for the orthotropic material are given and proved theoretically:(1) The piezoresistance on the principal axis of an orthotropic material is independent ...In this paper three important characteristics in piezoresistance for the orthotropic material are given and proved theoretically:(1) The piezoresistance on the principal axis of an orthotropic material is independent of shear strains/stresses, but correlated with the normal strains/stresses only;(2) On the principal axis of material, following relations between piezoconductivity and piezoresistivity exist η iikk =-(γ ii ) -2 ξ iikk =-(ρ ii ) 2ξ iikk λ iikk =-(γ ii ) -2 χ iikk =-(ρ ii ) 2χ iikk (3) A laminate composed of orthotropic laminae in different orientations is orthotropic for its average/effective properties.展开更多
Feasibility of measuring stress distributions of orthotropic composite materials and structures in plane stress state by the lock-in infrared thermography technique is analyzed and stress distributions of a lap joint ...Feasibility of measuring stress distributions of orthotropic composite materials and structures in plane stress state by the lock-in infrared thermography technique is analyzed and stress distributions of a lap joint structure made of a kind of glass reinforced plastic composite lamination plates under tensile loadings are obtained by the lock-in infrared thermography technique.Feasibility and credibility of using this technique to measure stress distributions of orthotropic composite materials and structures in plane stress state are proved by comparing the results with the data given by the digital speckle correlation method.展开更多
Investigation of paper cutting process is vital for the design of cutting tools,but the fracture mechanism of paper cutting is still unclear.Here,we focus on the cutting process of paper,including the key parameters o...Investigation of paper cutting process is vital for the design of cutting tools,but the fracture mechanism of paper cutting is still unclear.Here,we focus on the cutting process of paper,including the key parameters of cohesive zone model(CZM)for the orthotropic paper,to simulate the shear fracture process.Firstly,the material constants of the orthotropic paper are determined by longitudinal and transverse tensile test.Secondly,based on the tensile stressstrain curves,combined with damage theory and numerical simulations,the key parameters of the CZM for the orthotropic paper are obtained.Finally,a model III fracture is simulated to verify the accuracy of the model.Results show that the load-displacement curves obtained by the simulation is consistent with the test results.展开更多
A general solution of differential equation for transverse displacement function of orthotropic rectangular thin plates in free vibration is established in this paper. It can be used to solve the vibration problem of ...A general solution of differential equation for transverse displacement function of orthotropic rectangular thin plates in free vibration is established in this paper. It can be used to solve the vibration problem of plate with arbitrary boundaries. As an example, the frequencies of a composite laminated plate with four free edges have been solved. The result as compared with the experiment is satisfactory.展开更多
The title problem is systematically analyzed by the differential quadrature (DQ) method. Estimates of the critical buckling loads are obtained for combinations of various boundary conditions, internal and/or external ...The title problem is systematically analyzed by the differential quadrature (DQ) method. Estimates of the critical buckling loads are obtained for combinations of various boundary conditions, internal and/or external Pressures, hole sizes,and rigidity ratios. A comparison is made with existing results for certain cases. Numerical investigation has been carried out with regard to the convergence of the solutions. It is found that accurate results are obtained with only nine or eleven grid points.展开更多
In this work,we extend the recently proposed adaptive phase field method to model fracture in orthotropic functionally graded materials(FGMs).A recovery type error indicator combined with quadtree decomposition is emp...In this work,we extend the recently proposed adaptive phase field method to model fracture in orthotropic functionally graded materials(FGMs).A recovery type error indicator combined with quadtree decomposition is employed for adaptive mesh refinement.The proposed approach is capable of capturing the fracture process with a localized mesh refinement that provides notable gains in computational efficiency.The implementation is validated against experimental data and other numerical experiments on orthotropic materials with different material orientations.The results reveal an increase in the stiffness and the maximum force with increasing material orientation angle.The study is then extended to the analysis of orthotropic FGMs.It is observed that,if the gradation in fracture properties is neglected,the material gradient plays a secondary role,with the fracture behaviour being dominated by the orthotropy of the material.However,when the toughness increases along the crack propagation path,a substantial gain in fracture resistance is observed.展开更多
A numerical method to simulate thermoelastic excitation of transient Lamb wave propagating along arbitrary directions in orthotropic plates is presented by employing the expansion method of the Lamb wave modes.The dis...A numerical method to simulate thermoelastic excitation of transient Lamb wave propagating along arbitrary directions in orthotropic plates is presented by employing the expansion method of the Lamb wave modes.The displacement is expressed by a summation of the symmetric and antisymmetric modes in the surface stress-free orthotropic plate,and it is particularly suitable for waveform analyses of Lamb wave in orthotropic thin plates because one needs only to calculate the lowest few modes.The characteristics of dispersion and transient wave-forms are analyzed for a transversely isotropic plate.The results show that this method provides a quantitative analysis to Characterize anisotropic properties and elastic stiffness properties of the orthotropic plates by the laser-generated Lamb wave detection.展开更多
In this paper,we connsider the plane crack problem of the compound orthotropic material for loads applied symmetrically with respect to the crack plane by means of method of complex variable.
A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stres...A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52130303,52327802,52303101,52173078,51973158)the China Postdoctoral Science Foundation(2023M732579)+2 种基金Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001)National Key R&D Program of China(No.2022YFB3805702)Joint Funds of Ministry of Education(8091B032218).
文摘Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.
文摘In this paper three important characteristics in piezoresistance for the orthotropic material are given and proved theoretically:(1) The piezoresistance on the principal axis of an orthotropic material is independent of shear strains/stresses, but correlated with the normal strains/stresses only;(2) On the principal axis of material, following relations between piezoconductivity and piezoresistivity exist η iikk =-(γ ii ) -2 ξ iikk =-(ρ ii ) 2ξ iikk λ iikk =-(γ ii ) -2 χ iikk =-(ρ ii ) 2χ iikk (3) A laminate composed of orthotropic laminae in different orientations is orthotropic for its average/effective properties.
基金by the Defense Industry Technical Foundation Research Project of China under Grant No Z052009T002.
文摘Feasibility of measuring stress distributions of orthotropic composite materials and structures in plane stress state by the lock-in infrared thermography technique is analyzed and stress distributions of a lap joint structure made of a kind of glass reinforced plastic composite lamination plates under tensile loadings are obtained by the lock-in infrared thermography technique.Feasibility and credibility of using this technique to measure stress distributions of orthotropic composite materials and structures in plane stress state are proved by comparing the results with the data given by the digital speckle correlation method.
基金supported by the National Natural Science Foundation of China(No.11702147)。
文摘Investigation of paper cutting process is vital for the design of cutting tools,but the fracture mechanism of paper cutting is still unclear.Here,we focus on the cutting process of paper,including the key parameters of cohesive zone model(CZM)for the orthotropic paper,to simulate the shear fracture process.Firstly,the material constants of the orthotropic paper are determined by longitudinal and transverse tensile test.Secondly,based on the tensile stressstrain curves,combined with damage theory and numerical simulations,the key parameters of the CZM for the orthotropic paper are obtained.Finally,a model III fracture is simulated to verify the accuracy of the model.Results show that the load-displacement curves obtained by the simulation is consistent with the test results.
基金the National Natural Science Foundation of China(19872072)
文摘A general solution of differential equation for transverse displacement function of orthotropic rectangular thin plates in free vibration is established in this paper. It can be used to solve the vibration problem of plate with arbitrary boundaries. As an example, the frequencies of a composite laminated plate with four free edges have been solved. The result as compared with the experiment is satisfactory.
文摘The title problem is systematically analyzed by the differential quadrature (DQ) method. Estimates of the critical buckling loads are obtained for combinations of various boundary conditions, internal and/or external Pressures, hole sizes,and rigidity ratios. A comparison is made with existing results for certain cases. Numerical investigation has been carried out with regard to the convergence of the solutions. It is found that accurate results are obtained with only nine or eleven grid points.
基金E.Martínez-Paneda acknowledges financial support from the Royal Commission for the 1851 Exhibition through their Research Fellowship programme(RF496/2018).
文摘In this work,we extend the recently proposed adaptive phase field method to model fracture in orthotropic functionally graded materials(FGMs).A recovery type error indicator combined with quadtree decomposition is employed for adaptive mesh refinement.The proposed approach is capable of capturing the fracture process with a localized mesh refinement that provides notable gains in computational efficiency.The implementation is validated against experimental data and other numerical experiments on orthotropic materials with different material orientations.The results reveal an increase in the stiffness and the maximum force with increasing material orientation angle.The study is then extended to the analysis of orthotropic FGMs.It is observed that,if the gradation in fracture properties is neglected,the material gradient plays a secondary role,with the fracture behaviour being dominated by the orthotropy of the material.However,when the toughness increases along the crack propagation path,a substantial gain in fracture resistance is observed.
基金Supported by the National Natural Science Foundation of China under Grant No.19574024the Natural Science Foundation of Jiangsu Province under Grant No.BK97031.
文摘A numerical method to simulate thermoelastic excitation of transient Lamb wave propagating along arbitrary directions in orthotropic plates is presented by employing the expansion method of the Lamb wave modes.The displacement is expressed by a summation of the symmetric and antisymmetric modes in the surface stress-free orthotropic plate,and it is particularly suitable for waveform analyses of Lamb wave in orthotropic thin plates because one needs only to calculate the lowest few modes.The characteristics of dispersion and transient wave-forms are analyzed for a transversely isotropic plate.The results show that this method provides a quantitative analysis to Characterize anisotropic properties and elastic stiffness properties of the orthotropic plates by the laser-generated Lamb wave detection.
文摘In this paper,we connsider the plane crack problem of the compound orthotropic material for loads applied symmetrically with respect to the crack plane by means of method of complex variable.
基金the Project Support of NSFC(No.U19B6003-05 and No.52074314)。
文摘A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.