期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
基于动态MDONPE算法的间歇过程故障检测
1
作者 赵小强 刘凯 《兰州理工大学学报》 CAS 北大核心 2022年第2期90-96,共7页
针对间歇过程数据存在的非线性和动态特性导致故障检测效果不佳的问题,提出一种基于滑动窗(sliding window,SW)的多向差分正交邻域保持嵌入(multiway differential orthogonal neighborhood preserving embedded,MDONPE)算法.首先对间... 针对间歇过程数据存在的非线性和动态特性导致故障检测效果不佳的问题,提出一种基于滑动窗(sliding window,SW)的多向差分正交邻域保持嵌入(multiway differential orthogonal neighborhood preserving embedded,MDONPE)算法.首先对间歇过程数据进行预处理,找到样本的最近邻,将样本与最近邻进行差分运算;然后对NPE算法进行投影向量正交化得到具有正交约束的正交邻域保持嵌入算法,利用正交邻域保持嵌入算法进行降维和特征提取,进一步利用滑动窗策略,选择合适的窗口宽度,合并窗口内的采样数据,使得故障样本的特征更加明显;最后通过检测T^(2)和SPE统计量判断是否发生故障.利用青霉素发酵仿真过程数据并与MPCA、KNPE算法进行对比验证,结果显示SW-MDONPE算法在故障检测中对比其他算法有更好的检测效果. 展开更多
关键词 间歇过程 故障检测 正交邻域保持嵌入 差分策略 滑动窗
在线阅读 下载PDF
一种用于人脸识别的正交邻域保护嵌入算法 被引量:10
2
作者 陶晓燕 姬红兵 景志宏 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2008年第3期439-443,共5页
在邻域保护嵌入算法的基础上,提出了一种新的降维方法——正交邻域保护嵌入算法.首先,从最优投影的概念出发,定义了一种反映投影向量的邻域结构保护能力的函数;然后以邻域保护函数为目标函数,在原始的优化问题中增加正交约束条件... 在邻域保护嵌入算法的基础上,提出了一种新的降维方法——正交邻域保护嵌入算法.首先,从最优投影的概念出发,定义了一种反映投影向量的邻域结构保护能力的函数;然后以邻域保护函数为目标函数,在原始的优化问题中增加正交约束条件,推导得到一组具有正交性的最优投影向量的迭代公式.与邻域保护嵌入算法相比,得到的正交向量具有更好的邻域保护性能,从而带来更强的判别能力,降低了误差率.在标准人脸库上的实验结果表明,与其他降维方法相比,新算法的最低误差率可减小15%~20%,且在选取的特征维数较低时就可获得最优值. 展开更多
关键词 邻域保护嵌入算法 正交邻域保护嵌入算法 邻域保护能力 人脸识别
在线阅读 下载PDF
基于正交邻域保持嵌入特征约简的故障诊断模型 被引量:24
3
作者 李锋 汤宝平 董绍江 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第3期621-627,共7页
提出一种基于正交邻域保持嵌入(orthogonal neighborhood preserving embedding,ONPE)特征约简的故障诊断模型。首先将原振动信号经验模式分解(empirical mode decomposition,EMD)并构造Shannon熵得到高维特征向量,再利用ONPE将高维特... 提出一种基于正交邻域保持嵌入(orthogonal neighborhood preserving embedding,ONPE)特征约简的故障诊断模型。首先将原振动信号经验模式分解(empirical mode decomposition,EMD)并构造Shannon熵得到高维特征向量,再利用ONPE将高维特征向量约简为低维特征向量,并输入到最近邻分类器(k-nearest neighbors classifier,KNNC)中进行故障识别。本模型充分利用了EMD分解在故障特征提取、ONPE在信息压缩和KNNC在分类决策方面的优势,实现了旋转机械故障特征提取到故障诊断的全程自动化,并提高了诊断精度,为旋转机械故障诊断提供了一种新的模型分析方法。一个滚动轴承故障诊断实例验证了该模型的有效性。 展开更多
关键词 正交邻域保持嵌入 流形学习 特征约简 最近邻分类器 经验模式分解 故障诊断
在线阅读 下载PDF
基于LSNPE算法的化工过程故障检测 被引量:24
4
作者 宋冰 马玉鑫 +1 位作者 方永锋 侍洪波 《化工学报》 EI CAS CSCD 北大核心 2014年第2期620-627,共8页
复杂化工过程通常具有多个操作模态,而且采集的数据不服从单一的高斯或非高斯分布。针对化工过程的多模态和复杂数据分布问题,将局部标准化(local standardized,LS)策略应用于邻域保持嵌入(neighborhood preserving embedding,NPE)算法... 复杂化工过程通常具有多个操作模态,而且采集的数据不服从单一的高斯或非高斯分布。针对化工过程的多模态和复杂数据分布问题,将局部标准化(local standardized,LS)策略应用于邻域保持嵌入(neighborhood preserving embedding,NPE)算法,提出了一种新的基于局部标准化邻域保持嵌入(local standardized neighborhood preserving embedding,LSNPE)算法的故障检测方法。首先,使用LSNPE算法提取高维数据的低维子流形,进行维数约减,同时保持邻域结构不变。其次,通过特征空间中样本的局部离群因子(local outlier factor,LOF)构造监控统计量并确定其控制限。相较于监控多模态化工过程的多模型策略,提出的LSNPE方法不需要过程先验知识的支持,只需建立一个全局的监控模型。最后,通过数值仿真及Tennessee Eastman(TE)过程仿真研究验证了本文提出方法的有效性。 展开更多
关键词 局部标准化 邻域保持嵌入算法 局部离群因子 多模态过程系统 监控模型
在线阅读 下载PDF
基于流形学习和隐Markov模型的故障诊断 被引量:2
5
作者 邓蕾 李锋 姚金宝 《计算机集成制造系统》 EI CSCD 北大核心 2010年第10期2153-2159,共7页
为实现旋转机械故障诊断的自动化与高精度,提出基于正交邻域保持嵌入和连续隐Markov模型的模型诊断方法。将活动件故障振动信号进行经验模式分解并构造Shannon熵得到高维特征向量,利用正交邻域保持嵌入将高维特征向量约简为低维特征向量... 为实现旋转机械故障诊断的自动化与高精度,提出基于正交邻域保持嵌入和连续隐Markov模型的模型诊断方法。将活动件故障振动信号进行经验模式分解并构造Shannon熵得到高维特征向量,利用正交邻域保持嵌入将高维特征向量约简为低维特征向量,并输入到各个状态连续隐Markov链进行旋转机械的故障模式识别。通过深沟球轴承故障诊断实例验证了该模型的有效性。 展开更多
关键词 正交邻域保持嵌入 流形学习 连续隐Markov模型 经验模式分解 故障诊断
在线阅读 下载PDF
基于改进KNPE算法的化工过程故障检测 被引量:4
6
作者 李军祥 李春阳 夏丽莎 《计算机应用研究》 CSCD 北大核心 2021年第5期1459-1462,共4页
核邻域保持嵌入(KNPE)算法能够较好地在非线性空间中进行故障检测,但高斯核函数仅对数据的局部空间有较强学习能力,泛化能力较差。针对上述问题,在高斯核函数的基础上,引入泛化能力较强的多项式核函数与其进行线性加权组合,提出基于组... 核邻域保持嵌入(KNPE)算法能够较好地在非线性空间中进行故障检测,但高斯核函数仅对数据的局部空间有较强学习能力,泛化能力较差。针对上述问题,在高斯核函数的基础上,引入泛化能力较强的多项式核函数与其进行线性加权组合,提出基于组合核函数的邻域保持嵌入(CKNPE)算法。该算法在注重数据局部学习能力的同时增强了外推、预测能力,更多地保留了原始数据的特征信息。通过田纳西—伊斯曼(TE)仿真实验,与CKPCA、CMKPCA算法进行横向比较,并与NPE、KNPE算法进行纵向比较,证明了CKNPE算法对非线性故障检测的优越性。 展开更多
关键词 化工生产 组合核函数 核邻域保持嵌入算法 故障检测
在线阅读 下载PDF
局部时差约束邻域保持嵌入算法在故障检测中的应用 被引量:1
7
作者 王琨 侍洪波 +2 位作者 谭帅 宋冰 陶阳 《化工学报》 EI CAS CSCD 北大核心 2022年第7期3109-3119,共11页
传统的邻域保持嵌入(neighborhood preserving embedding,NPE)算法通过k近邻(k-nearest neighbors,k-NN)方法选择邻域进行重构来实现降维。但在实际工业过程中采集的样本具有时序相关性,仅仅通过欧氏距离选择近邻样本不能充分反映数据... 传统的邻域保持嵌入(neighborhood preserving embedding,NPE)算法通过k近邻(k-nearest neighbors,k-NN)方法选择邻域进行重构来实现降维。但在实际工业过程中采集的样本具有时序相关性,仅仅通过欧氏距离选择近邻样本不能充分反映数据中包含的信息,从而影响检测效果。因此,提出一种局部时差约束邻域保持嵌入(local time difference constrained neighborhood preserving embedding,LTDCNPE)算法,充分考虑样本间的时间和空间关系,从而建立准确的故障检测模型。首先,该算法在固定尺度的时间窗内,根据样本的时序关系和空间特征挑选出邻域。其次,利用样本间的时间差异为邻域样本进行加权,使数据特征保留了高维空间的局部结构。然后,对降维后得到的主元空间和残差空间构建T和SPE统计量并确定控制限。最后,通过数值例子和Tennessee Eastman(TE)过程仿真验证LTDCNPE算法的有效性。 展开更多
关键词 过程控制 过程系统 动态建模 邻域保持嵌入算法 邻域选择 故障检测
在线阅读 下载PDF
WOA-SVM算法在钛合金端铣刀具磨损预测的研究 被引量:7
8
作者 梁柱 宋小春 《机床与液压》 北大核心 2022年第15期166-174,共9页
针对钛合金加工中刀具磨损状态的准确识别问题,建立了基于支持向量机(SVM)和鲸鱼优化算法(WOA)的钛合金刀具磨损预测模型。将SVM和WOA相结合,提出了一种新的WOA-SVM模型,用于钛合金立铣刀刀具磨损的精确估计。通过提取切削力的信号特征... 针对钛合金加工中刀具磨损状态的准确识别问题,建立了基于支持向量机(SVM)和鲸鱼优化算法(WOA)的钛合金刀具磨损预测模型。将SVM和WOA相结合,提出了一种新的WOA-SVM模型,用于钛合金立铣刀刀具磨损的精确估计。通过提取切削力的信号特征作为监测特征,利用邻域保持嵌入(NPE)对监测特征实现降维,提高了WOA-SVM模型的建模效率。实验结果表明:在保证预测精度的前提下,NPE的使用使WOA-SVM的建模时间减少了90%以上;与PSO-SVM和GSA-SVM等常用方法相比,WOA-SVM具有较高的预测精度,建模时间减少了30%以上;所建模型能有效预测钛合金加工刀具的磨损状态。 展开更多
关键词 刀具磨损估计 邻域保持嵌入(NPE) 支持向量机(SVM) 钛合金 鲸鱼优化算法(WOA)
在线阅读 下载PDF
正交及不相关边界邻域保持嵌入的人脸识别 被引量:1
9
作者 陈达遥 陈秀宏 《计算机应用》 CSCD 北大核心 2013年第11期3097-3101,共5页
邻域保持嵌入(NPE)算法本质上仍是一种无监督方法,并没有有效利用已有的类别信息提高分类效率。为此提出两种有监督流形学习方法:正交边界邻域保持嵌入(OMNPE)和不相关边界邻域保持嵌入(UMNPE)。首先构造类内和类间邻接图,并... 邻域保持嵌入(NPE)算法本质上仍是一种无监督方法,并没有有效利用已有的类别信息提高分类效率。为此提出两种有监督流形学习方法:正交边界邻域保持嵌入(OMNPE)和不相关边界邻域保持嵌入(UMNPE)。首先构造类内和类间邻接图,并定义类内和类间重构误差;然后分别在正交和不相关约束条件下寻找最小化类内重构误差同时最大化类间重构误差的投影向量;将训练样本和测试样本分别投影到低维子空间中,再利用最近邻分类器进行分类识别。在ORL和Yale人脸库上的实验结果表明,与线性判别分析(LDA)、边界Fisher分析(MFA)等子空间人脸识别算法相比,所提算法的平均识别率提高了0.5%-3%,验证了算法的有效性。 展开更多
关键词 降维 流形学习 人脸识别 邻域保持嵌入 正交 不相关
在线阅读 下载PDF
基于正交邻域保持嵌入与多核相关向量机的滚动轴承早期故障诊断 被引量:13
10
作者 陈法法 杨晓青 +2 位作者 陈保家 程珩 肖文荣 《计算机集成制造系统》 EI CSCD 北大核心 2018年第8期1946-1954,共9页
针对滚动轴承早期故障特征微弱难以快速有效辨识的问题,提出一种基于正交邻域保持嵌入(ONPE)与多核相关向量机(RVM)的滚动轴承早期故障诊断方法。首先基于多域量化特征构造表征滚动轴承早期故障的多域特征向量,基于ONPE线性流形学习对... 针对滚动轴承早期故障特征微弱难以快速有效辨识的问题,提出一种基于正交邻域保持嵌入(ONPE)与多核相关向量机(RVM)的滚动轴承早期故障诊断方法。首先基于多域量化特征构造表征滚动轴承早期故障的多域特征向量,基于ONPE线性流形学习对多域特征向量进行约简降维处理,获取最能反映滚动轴承早期故障运行状态变化的低维敏感特征,随后将获取的低维敏感特征输入给多核RVM进行早期故障模式的分类辨识。通过分析滚动轴承早期故障的模拟实验数据表明,该方法对高维复杂的非线性早期故障特征具有良好的约简降维性能,而且比单一核函数RVM具有更好的诊断精度。 展开更多
关键词 正交邻域保持嵌入 多核相关向量机 滚动轴承 早期故障 故障诊断
在线阅读 下载PDF
基于Schur分解和正交邻域保持嵌入算法的故障数据集降维方法 被引量:2
11
作者 刘韵佳 赵荣珍 王雪冬 《中国机械工程》 EI CAS CSCD 北大核心 2017年第21期2552-2556,共5页
针对转子故障特征数据集降维问题,提出一种基于Schur分解和正交邻域保持嵌入算法的故障数据集降维方法——Schur-ONPE降维方法。该方法首先应用小波包分解提取不同频带内的能量以组成故障特征值集合,然后运用Schur分解和ONPE算法将高维... 针对转子故障特征数据集降维问题,提出一种基于Schur分解和正交邻域保持嵌入算法的故障数据集降维方法——Schur-ONPE降维方法。该方法首先应用小波包分解提取不同频带内的能量以组成故障特征值集合,然后运用Schur分解和ONPE算法将高维特征集向低维投影,使降维后类内散度最小化及类间分离度最大化,最后将降维后得到的低维特征集输入K近邻分类器进行模式识别。通过双跨转子试验台的故障特征数据集进行验证,结果表明该方法能够有效地解决转子故障特征集的降维问题。 展开更多
关键词 故障诊断 数据降维 SCHUR分解 正交邻域保持嵌入算法
在线阅读 下载PDF
KNPE算法在化工过程故障检测中的应用 被引量:3
12
作者 李春阳 夏丽莎 李军祥 《控制工程》 CSCD 北大核心 2020年第1期92-97,共6页
化工生产过程具有维数高、非线性强等特点。针对传统的邻域保持嵌入(NPE)算法对非线性数据特征提取不足的缺陷,引入高斯核函数,将数据由非线性的输入空间转换到线性的特征空间。核邻域保持嵌入(KNPE)算法在构建局部空间特征结构的基础上... 化工生产过程具有维数高、非线性强等特点。针对传统的邻域保持嵌入(NPE)算法对非线性数据特征提取不足的缺陷,引入高斯核函数,将数据由非线性的输入空间转换到线性的特征空间。核邻域保持嵌入(KNPE)算法在构建局部空间特征结构的基础上,能够更好地提取数据的非线性结构。通过以田纳西-伊斯曼(TE)仿真过程为例,构造T2和SPE统计量进行故障检测,证明了KNPE方法比NPE和KPCA方法能够更快更准确的检测出非线性故障的发生。 展开更多
关键词 化工故障 流形学习 核邻域保持嵌入算法 故障检测
在线阅读 下载PDF
基于NPE的Web文本分类方法研究 被引量:1
13
作者 徐海瑞 张文生 吴双 《计算机工程》 CAS CSCD 北大核心 2011年第17期133-135,共3页
提出一种基于流形学习的文本分类方法以解决高维文本数据分类问题。利用近邻保持嵌入流形学习算法获得高维Web文本空间中的低维流形结构,采用K近邻分类器对低维流形进行分类。实验结果表明,基于流形学习的方法能获得较好的分类效果,具... 提出一种基于流形学习的文本分类方法以解决高维文本数据分类问题。利用近邻保持嵌入流形学习算法获得高维Web文本空间中的低维流形结构,采用K近邻分类器对低维流形进行分类。实验结果表明,基于流形学习的方法能获得较好的分类效果,具有稳定的性能。 展开更多
关键词 近邻保持嵌入算法 流形学习 文本分类 特征提取 K近邻
在线阅读 下载PDF
改进LNS和邻域保持嵌入算法的研究 被引量:3
14
作者 李元 黄莹莹 《计算机应用与软件》 北大核心 2021年第2期250-257,共8页
传统邻域保持嵌入算法(Neighbor Preserving Embedding,NPE)对具有多中心、方差差异明显特性的高维数据的降维处理效果并不好,因此提出一种改进LNS和邻域保持嵌入算法(Modified Local Neighbor Standardization-Neighbor Preserving Emb... 传统邻域保持嵌入算法(Neighbor Preserving Embedding,NPE)对具有多中心、方差差异明显特性的高维数据的降维处理效果并不好,因此提出一种改进LNS和邻域保持嵌入算法(Modified Local Neighbor Standardization-Neighbor Preserving Embedding,MLNS-NPE),并应用于故障诊断中。利用MLNS算法对数据进行处理,对处理后的数据进行NPE算法建模。在数值例子和青霉素发酵过程中应用该算法与传统NPE算法、核邻域保持嵌入算法(KNPE)、KNN算法比较,结果表明,采用该算法后,数据多中心和模态差异消除,为后续NPE算法的应用提供先决条件,同时相比其他算法故障检测率最高,提高了NPE算法对多模态数据的检测能力。 展开更多
关键词 改进LNS算法 邻域保持嵌入算法 青霉素发酵 多模态 故障检测
在线阅读 下载PDF
基于图嵌入的正交局部保持投影无监督特征选择
15
作者 朱建勇 李兆祥 +2 位作者 徐彬 杨辉 聂飞平 《计算机科学》 CSCD 北大核心 2023年第S02期540-548,共9页
传统的基于图学习的无监督特征选择算法通常采用稀疏正则化方法来选择特征,但这种方法过于依赖于图学习的效率,并且存在正则化参数调优困难等问题。为解决这些问题,针对性地提出了一种基于图嵌入学习的正交局部保持投影无监督特征选择(O... 传统的基于图学习的无监督特征选择算法通常采用稀疏正则化方法来选择特征,但这种方法过于依赖于图学习的效率,并且存在正则化参数调优困难等问题。为解决这些问题,针对性地提出了一种基于图嵌入学习的正交局部保持投影无监督特征选择(Orthogonal Locality Preserving Projection Unsupervised Feature Selection via Graph Embedding,OLPPFS)算法。首先,利用能够保持数据局部几何流形结构的局部保持投影方法增强数据的线性映射能力,同时约束正交方向投影以方便数据重构;其次,通过图嵌入学习方法快速构建稀疏相似图来描述样本数据的内在结构;接着,采用l_(2,0)范数约束投影矩阵的值,准确选择指定数目的判别性特征子集;最后,针对l_(2,0)范数NP难题,设计一种有效求解l_(2,0)范数问题的无参迭代算法求解该模型。仿真结果表明了所提算法的有效性和优越性。 展开更多
关键词 无监督特征选择 正交局部保持投影 图嵌入学习 l_(2 0)范数 无参迭代算法
在线阅读 下载PDF
基于多尺度稀疏近邻图的近邻保持嵌入算法 被引量:2
16
作者 于露 《沈阳工业大学学报》 EI CAS 北大核心 2019年第2期206-210,共5页
针对近邻保持嵌入算法NPE中构造近邻图所存在的缺陷,提出了基于多尺度稀疏近邻图的近邻保持嵌入算法.对于每个待识别的人脸图片,该方法都建立一个具有九个尺度的图像金字塔,并且计算金字塔中每个尺度的图片与其他图片金字塔对应尺度的... 针对近邻保持嵌入算法NPE中构造近邻图所存在的缺陷,提出了基于多尺度稀疏近邻图的近邻保持嵌入算法.对于每个待识别的人脸图片,该方法都建立一个具有九个尺度的图像金字塔,并且计算金字塔中每个尺度的图片与其他图片金字塔对应尺度的稀疏近邻.利用稀疏表示算法抗遮挡的特性,通过计算样本多尺度近邻的方法克服了传统方法丢失人脸图片二维结构的缺点.结果表明,该算法具有较强的鲁棒性,比传统的NPE算法具有更好的识别效果. 展开更多
关键词 近邻图 近邻样本 降维算法 近邻保持嵌入 人脸识别 稀疏表示 图片金字塔 多尺度图片
在线阅读 下载PDF
基于WMNPE间歇过程监测的改进SVDD算法
17
作者 惠永永 赵小强 《兰州理工大学学报》 CAS 北大核心 2018年第6期107-111,共5页
间歇过程数据包含表征过程变化的相关信息和非相关信息,并且呈现高斯与非高斯的多分布等特点.为了更加充分地提取数据的有用信息和处理数据的非高斯性等问题,实现有效的过程监控,提出一种基于WMNPE间歇过程监测的改进SVDD算法.首先运用... 间歇过程数据包含表征过程变化的相关信息和非相关信息,并且呈现高斯与非高斯的多分布等特点.为了更加充分地提取数据的有用信息和处理数据的非高斯性等问题,实现有效的过程监控,提出一种基于WMNPE间歇过程监测的改进SVDD算法.首先运用多向邻域保持嵌入(MNPE)算法来提取低维子流形以实现降维;再使用概率权值策略来提取表征过程变化的相关信息,通过Greedy方法提取低维子流形的特征样本;最后以支持向量数据描述(SVDD)方法建立监控模型进行监控.通过青霉素发酵过程仿真平台验证了所提算法的有效性. 展开更多
关键词 间歇过程 过程监控 多向邻域保持嵌入(MNPE)算法 支持向量数据描述(SVDD)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部