在探讨正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统的优化中,一个显著挑战在于其信号检测性能的相对不足。同时,针对基于深度神经网络的索引调制(Deep Neural Network Based Index Modulation,DNN-IM)检测算法...在探讨正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统的优化中,一个显著挑战在于其信号检测性能的相对不足。同时,针对基于深度神经网络的索引调制(Deep Neural Network Based Index Modulation,DNN-IM)检测算法,普遍存在着误码率及损失值偏高的问题。为了弥补上述难题,文中提出一种基于多层感知机(Multilayer Perceptron,MLP)的索引调制检测算法,即MLP-IM算法。该算法采用融合两个连接层与一个输出层的架构设计,通过挑选的激活函数实现对OFDM索引调制系统中数据比特的精准还原。首先将OFDM索引调制系统的基础理论巧妙应用于数据的预处理阶段,随后利用仿真数据集对MLP神经网络模型进行全面而深入的离线训练,确保模型的稳健性与准确性。在检测阶段,通过MLP-IM检测算法实现了对OFDM索引调制系统的高效检测。仿真结果表明,所提出的MLP-IM算法在误码率控制和损失值两个方面的性能表现与最大似然检测算法相媲美,甚至在某些场景下超越了现有DNN-IM算法的性能,其性能改善幅度在0.2~6 dB的区间内。展开更多
在研究正交时频空(Orthogonal Time Frequency and Space,OTFS)调制原理基础上设计了一种基于零后缀(Zero Suffix,ZP)保护的OTFS波形方案。提出了同步、信道估计方法和基于时延-时域最大比合并(Maximum Ratio Combining,MRC)的检测算法...在研究正交时频空(Orthogonal Time Frequency and Space,OTFS)调制原理基础上设计了一种基于零后缀(Zero Suffix,ZP)保护的OTFS波形方案。提出了同步、信道估计方法和基于时延-时域最大比合并(Maximum Ratio Combining,MRC)的检测算法并对该算法进行了化简;给出了信道插值和MRC检测器硬件实现方案并对提出的OTFS系统波形进行了现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA)硬件实现,验证了所设计OTFS系统关键算法的可行性。测试结果表明,所设计OTFS系统具有良好的抗双选择性衰落性能。展开更多
与线性调频连续波信号不同,采用正交频分复用调制(orthogonal frequency division multiplexing,OFDM)方案信号的雷达,当每个符号上调制的传输信息完全随机时,其模糊函数具有较高的旁瓣;当探测场景中存在较多较强的杂波时,目标回波对应...与线性调频连续波信号不同,采用正交频分复用调制(orthogonal frequency division multiplexing,OFDM)方案信号的雷达,当每个符号上调制的传输信息完全随机时,其模糊函数具有较高的旁瓣;当探测场景中存在较多较强的杂波时,目标回波对应的距离多普勒峰被淹没在脉压积累后的强杂波的旁瓣之下,导致目标无法被识别。目前已有的杂波抑制方案多面临杂波抑制度不足的问题。基于此,本文提出基于贪心策略的高效杂波处理方案,通过自适应逐点抑制强杂波,使旁瓣基底下降,目标信息浮现出来。并与实测数据进行了对比,结果表明,该方法取得了比常规方法更好的杂波抑制性能。展开更多
在带限数字通信系统中,平方根奈奎斯特(square-root Nyquist,SR-NYQ)滤波器通常同时应用于系统的发送端和接收端,可以有效减少符号间干扰(inter symbol interference,ISI)。本文提出了一种基于遗传算法(genetic algorithm,GA)的线性相位...在带限数字通信系统中,平方根奈奎斯特(square-root Nyquist,SR-NYQ)滤波器通常同时应用于系统的发送端和接收端,可以有效减少符号间干扰(inter symbol interference,ISI)。本文提出了一种基于遗传算法(genetic algorithm,GA)的线性相位SR-NYQ滤波器设计方法,其中滤波器ISI、通带和阻带波纹被融合构造为适应度函数。得益于GA强大的全局优化能力,该方法设计的原型滤波器在更加接近奈奎斯特条件的同时,提供了优于传统根升余弦滤波器的设计灵活性。此外,本文设计的SR-NYQ滤波器在正交频分复用系统中作为匹配和成型滤波器进行测试,并与传统的根升余弦滤波器进行对比。仿真对比结果表明,本文所设计的SR-NYQ滤波器具有更好的频率响应,可以显著降低符号错误率。展开更多
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)调制因其高效的频带利用率和良好的抗多径能力广泛用于合作与非合作通信系统中。合作通信场景下,通常接收机可以利用已知帧结构实现OFDM信号的检测。但在非合作场景下,...正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)调制因其高效的频带利用率和良好的抗多径能力广泛用于合作与非合作通信系统中。合作通信场景下,通常接收机可以利用已知帧结构实现OFDM信号的检测。但在非合作场景下,接收机没有足够的先验信息,导致帧检测难度加大。针对这一问题,提出了一种适合于非合作通信场景的OFDM数据帧的检测算法。所提算法利用快速小波变换将含噪OFDM信号的功率包络进行小波分解与重构,对重构得到的功率包络进行差分运算后,再通过与阈值比较实现OFDM信号的帧检测。相较于混合能量检测算法,所提算法计算预设参数少,复杂度低。仿真结果表明,所提算法在加性高斯白噪声信道和多径衰落信道下带内信噪比分别取-6 dB和3 dB时即可实现零漏报率,且零漏报率的阈值选取范围比混合能量检测算法扩大了约6 dB。展开更多
文摘在探讨正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统的优化中,一个显著挑战在于其信号检测性能的相对不足。同时,针对基于深度神经网络的索引调制(Deep Neural Network Based Index Modulation,DNN-IM)检测算法,普遍存在着误码率及损失值偏高的问题。为了弥补上述难题,文中提出一种基于多层感知机(Multilayer Perceptron,MLP)的索引调制检测算法,即MLP-IM算法。该算法采用融合两个连接层与一个输出层的架构设计,通过挑选的激活函数实现对OFDM索引调制系统中数据比特的精准还原。首先将OFDM索引调制系统的基础理论巧妙应用于数据的预处理阶段,随后利用仿真数据集对MLP神经网络模型进行全面而深入的离线训练,确保模型的稳健性与准确性。在检测阶段,通过MLP-IM检测算法实现了对OFDM索引调制系统的高效检测。仿真结果表明,所提出的MLP-IM算法在误码率控制和损失值两个方面的性能表现与最大似然检测算法相媲美,甚至在某些场景下超越了现有DNN-IM算法的性能,其性能改善幅度在0.2~6 dB的区间内。
文摘在研究正交时频空(Orthogonal Time Frequency and Space,OTFS)调制原理基础上设计了一种基于零后缀(Zero Suffix,ZP)保护的OTFS波形方案。提出了同步、信道估计方法和基于时延-时域最大比合并(Maximum Ratio Combining,MRC)的检测算法并对该算法进行了化简;给出了信道插值和MRC检测器硬件实现方案并对提出的OTFS系统波形进行了现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA)硬件实现,验证了所设计OTFS系统关键算法的可行性。测试结果表明,所设计OTFS系统具有良好的抗双选择性衰落性能。
文摘与线性调频连续波信号不同,采用正交频分复用调制(orthogonal frequency division multiplexing,OFDM)方案信号的雷达,当每个符号上调制的传输信息完全随机时,其模糊函数具有较高的旁瓣;当探测场景中存在较多较强的杂波时,目标回波对应的距离多普勒峰被淹没在脉压积累后的强杂波的旁瓣之下,导致目标无法被识别。目前已有的杂波抑制方案多面临杂波抑制度不足的问题。基于此,本文提出基于贪心策略的高效杂波处理方案,通过自适应逐点抑制强杂波,使旁瓣基底下降,目标信息浮现出来。并与实测数据进行了对比,结果表明,该方法取得了比常规方法更好的杂波抑制性能。
文摘在带限数字通信系统中,平方根奈奎斯特(square-root Nyquist,SR-NYQ)滤波器通常同时应用于系统的发送端和接收端,可以有效减少符号间干扰(inter symbol interference,ISI)。本文提出了一种基于遗传算法(genetic algorithm,GA)的线性相位SR-NYQ滤波器设计方法,其中滤波器ISI、通带和阻带波纹被融合构造为适应度函数。得益于GA强大的全局优化能力,该方法设计的原型滤波器在更加接近奈奎斯特条件的同时,提供了优于传统根升余弦滤波器的设计灵活性。此外,本文设计的SR-NYQ滤波器在正交频分复用系统中作为匹配和成型滤波器进行测试,并与传统的根升余弦滤波器进行对比。仿真对比结果表明,本文所设计的SR-NYQ滤波器具有更好的频率响应,可以显著降低符号错误率。