期刊文献+
共找到176篇文章
< 1 2 9 >
每页显示 20 50 100
Solution for integer linear bilevel programming problems using orthogonal genetic algorithm 被引量:10
1
作者 Hong Li Li Zhang Yongchang Jiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第3期443-451,共9页
An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorith... An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm. 展开更多
关键词 integer linear bilevel programming problem integer optimization genetic algorithm orthogonal experiment design
在线阅读 下载PDF
基于GA-BP神经网络的宽带激光熔覆裂纹缺陷预测
2
作者 史墨可 路妍 +4 位作者 颉潭成 王军华 徐彦伟 倪崇智 翟文豪 《热加工工艺》 北大核心 2025年第12期119-123,128,共6页
针对宽带激光熔覆裂纹缺陷难以准确预测问题,以扫描速度、搭接率、激光功率作为输入,以熔覆试样裂纹密度为输出,建立了BP神经网络裂纹缺陷预测模型。采用遗传算法优化了BP神经网络的初始阈值和权值,对比分析了模型优化前后的相对误差。... 针对宽带激光熔覆裂纹缺陷难以准确预测问题,以扫描速度、搭接率、激光功率作为输入,以熔覆试样裂纹密度为输出,建立了BP神经网络裂纹缺陷预测模型。采用遗传算法优化了BP神经网络的初始阈值和权值,对比分析了模型优化前后的相对误差。结果表明:GA-BP神经网络模型的相对误差在0.22%~2.10%;BP神经网络模型的相对误差在2.09%~14.31%,GA-BP神经网络模型的预测精度远远高于BP神经网络模型。 展开更多
关键词 bp神经网络 裂纹 正交试验 遗传算法 宽带激光熔覆
在线阅读 下载PDF
基于BP神经网络的超空泡射弹优化设计方法
3
作者 巩世龙 党建军 +1 位作者 李少星 黄闯 《兵工学报》 北大核心 2025年第5期316-325,共10页
有效射程是超空泡射弹最重要的性能指标之一,受到外形和衡重参数的耦合影响。为了增加超空泡射弹的有效射程,建立计算超空泡射弹有效射程的数值模型,根据正交试验设计原则设计四因素五水平工况组合,通过仿真计算获得外形及衡重参数影响... 有效射程是超空泡射弹最重要的性能指标之一,受到外形和衡重参数的耦合影响。为了增加超空泡射弹的有效射程,建立计算超空泡射弹有效射程的数值模型,根据正交试验设计原则设计四因素五水平工况组合,通过仿真计算获得外形及衡重参数影响下的超空泡射弹有效射程数据集,结合反向传播(Back Propagation, BP)神经网络方法和遗传算法,建立超空泡射弹设计参数优化方法,获得全域最大有效射程及其对应的外形和衡重参数设计结果。研究结果表明:超空泡射弹的水下弹道具有稳定的尾拍特性,通过极差分析,质量对有效射程的影响最大;在没有精确数学模型的情况下,运用BP神经网络,基于有限个数据点训练出的有效射程预测模型精度高,平均误差为0.735%;通过遗传算法获得了四因素耦合影响下的全域最优射程,较数据集中的最好结果提高了5.01%,较正交优化结果提升了1.95%。所得研究结果可为超空泡射弹总体设计工作提供参考。 展开更多
关键词 超空泡射弹 正交试验 bp神经网络 遗传算法
在线阅读 下载PDF
基于改进BP神经网络的船舶油耗预测方法研究
4
作者 吴泽颖 赵强 +1 位作者 胡智辉 王敬钰 《舰船科学技术》 北大核心 2025年第11期149-154,共6页
为精确预估船舶油耗,推动航运业向绿色低碳转型,提出一种基于改进BP神经网络的船舶油耗预测方法。通过对原始航行数据进行预处理,去除噪声、偏差和异常值;利用核主成分分析法将数据中的10个原始变量降维为5个主成分,减少数据维度;采用... 为精确预估船舶油耗,推动航运业向绿色低碳转型,提出一种基于改进BP神经网络的船舶油耗预测方法。通过对原始航行数据进行预处理,去除噪声、偏差和异常值;利用核主成分分析法将数据中的10个原始变量降维为5个主成分,减少数据维度;采用遗传算法优化BP神经网络,建立高精度的船舶油耗模型。以1艘液化石油天然气运输船为研究对象,实验结果表明,优化后的BP神经网络油耗模型在预测性能方面获得较大提升,训练集和验证集的均方根误差分别降低了0.1122和0.1068,决定系数提高1.58%。该研究成果能够为船舶节能减排提供可靠的决策支持。 展开更多
关键词 bp神经网络 核主成分分析 遗传算法 船舶油耗 预测模型
在线阅读 下载PDF
基于改进PSO-BP神经网络的Ni-TiC复合镀层工艺参数优化方法
5
作者 李学威 王兆浩 《电镀与精饰》 北大核心 2025年第8期76-82,共7页
在Ni-TiC复合镀层的制备过程中,由于受到参数非线性波动以及多参数间复杂作用关系的影响,其镀层制备效果不佳。为达到理想的镀层效果,本次借助脉冲负荷电沉积法制备Ni-TiC复合镀层环境,开展基于改进粒子群优化-反向传播(Particle Swarm ... 在Ni-TiC复合镀层的制备过程中,由于受到参数非线性波动以及多参数间复杂作用关系的影响,其镀层制备效果不佳。为达到理想的镀层效果,本次借助脉冲负荷电沉积法制备Ni-TiC复合镀层环境,开展基于改进粒子群优化-反向传播(Particle Swarm Optimization Backpropagation,PSO-BP)神经网络的Ni-TiC复合镀层工艺参数优化方法研究。先对Ni-TiC复合镀层工艺进行分析,探讨TiC粒子浓度、电流密度以及pH值三种工艺参数的影响,然后以此为基础,设计正交试验,开展对Ni-TiC复合镀层工艺参数的初步优化,最后以得到的正交试验结果为输入,采用BP神经网络完成Ni-TiC复合镀层工艺参数优化模型的构建与训练设计,应用改进PSO算法完成BP神经网络模型参数寻优,实现Ni-TiC复合镀层工艺参数优化。实验结果表明:应用该方法,可以实现Ni-TiC复合镀层的制备工艺参数优化,采用优化后的工艺制备的复合镀层的耐腐蚀能力更强。 展开更多
关键词 改进PSO算法 bp神经网络 Ni-TiC复合镀层 工艺参数优化 正交实验 脉冲负荷电沉积方法
在线阅读 下载PDF
基于GA-BP算法的汽车前端框架翘曲变形优化及验证
6
作者 林煌旭 孔选 +3 位作者 陆将男 周华江 朱国常 朱浩伟 《工程塑料应用》 北大核心 2025年第1期90-97,共8页
针对车用前端框架格栅插槽处翘曲变形大造成整车装配精度差的问题,首先通过Moldflow软件建立有限元模型分析零件初始翘曲变形量及影响参数。选定模具温度、熔体温度、保压压力、保压时间、冷却时间作为设计因素,通过正交试验表得到工艺... 针对车用前端框架格栅插槽处翘曲变形大造成整车装配精度差的问题,首先通过Moldflow软件建立有限元模型分析零件初始翘曲变形量及影响参数。选定模具温度、熔体温度、保压压力、保压时间、冷却时间作为设计因素,通过正交试验表得到工艺参数与翘曲变形量之间的映射关系并建立单目标非线性优化模型。利用GA遗传算法改良的BP神经网络进一步描述优化模型的非线性函数关系,以适应度曲线迭代收敛预测得到最佳的BP网络模型预测工艺参数分别为:模具温度60℃、熔体温度265℃、保压压力55MPa、保压时间4s、冷却时间35s,最大翘曲变形量为1.191mm。最后将最优工艺参数导入Moldflow中模拟得到最大翘曲变形量为1.33mm,较优化前初始翘曲量2.423 mm降低了45.1%。经GA-BP算法优化后的工艺参数应用于生产制造过程,前端框架注塑件偏差测量结果表明,实际测量值与优化后Moldflow模拟值拟合度较高,两者平均偏差为0.28mm,满足整车装配要求,证实了GA-BP神经网络预测模型用于优化前端框架翘曲变形的可行性。 展开更多
关键词 汽车前端框架 翘曲变形 MOLDFLOW 正交试验法 GA遗传算法 bp神经网络模型
在线阅读 下载PDF
基于GA-BP神经网络边坡稳定性预测的方法及应用 被引量:7
7
作者 王发刚 邹平 +3 位作者 王忠康 戴勇 肖祖荣 刘正宇 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第6期161-167,共7页
为更有效预测边坡安全系数,以边坡的6个主要特征(重度γ、黏聚力c、内摩擦角φ、边坡角α、边坡高度H和孔隙水压力r u)参数为研究基础,构建基于遗传算法优化BP神经网络的边坡稳定性预测模型。首先,收集205组边坡案例建立样本数据集,采... 为更有效预测边坡安全系数,以边坡的6个主要特征(重度γ、黏聚力c、内摩擦角φ、边坡角α、边坡高度H和孔隙水压力r u)参数为研究基础,构建基于遗传算法优化BP神经网络的边坡稳定性预测模型。首先,收集205组边坡案例建立样本数据集,采用分布小提琴图和皮尔逊相关性分析系数检验矩阵进行特征参数分布特征与相关性的可视化分析;然后,采用构建的预测模型进行训练和测试;最后,对测试结果进行验证。研究结果表明:各特征参数的小提琴图分布相类似,特征参数之间相关性不显著,样本数据集较为合理;GA-BP与BP神经网络预测结果整体上均接近真实值,而采用遗传算法优化后的模型在预测方面具有更好的准确度和稳度。研究结果可为边坡稳定性状态判断提供一定参考。 展开更多
关键词 遗传算法 bp神经网络 可视化分析 边坡稳定性
在线阅读 下载PDF
基于GA-BP-Garson模型的市政污泥干燥过程含水率预测
8
作者 张凯强 王小雷 +2 位作者 赵建锋 胡鑫 王宁峰 《环境工程技术学报》 CAS CSCD 北大核心 2024年第4期1330-1336,共7页
市政污泥干燥过程中内部水分检测困难,为准确预测市政污泥热风干燥过程中内部水分的变化规律,将干燥时间、干燥温度、泥层厚度、流量压差作为输入变量,含水率作为输出变量,采用BP神经网络以及GA-BP神经网络分别建立市政污泥热风干燥过... 市政污泥干燥过程中内部水分检测困难,为准确预测市政污泥热风干燥过程中内部水分的变化规律,将干燥时间、干燥温度、泥层厚度、流量压差作为输入变量,含水率作为输出变量,采用BP神经网络以及GA-BP神经网络分别建立市政污泥热风干燥过程的水分预测模型;对GA-BP神经网络进行敏感性分析,研究了4个输入变量对预测结果的影响。结果表明,BP和GA-BP 2种水分预测模型测试集的决定系数(R^(2))分别为0.99955和0.99964,均方根误差(RMSE)分别为0.51317和0.45523,即GA-BP预测模型的预测效果更佳,能更准确地预测市政污泥干燥过程中含水率的动态变化。敏感性分析表明,干燥时间对GA-BP含水率预测模型的影响最为显著。研究结果可为污泥干燥工艺和过程的优化提供理论依据,为污泥资源化利用提供参考。 展开更多
关键词 市政污泥 干燥 遗传算法 bp神经网络 含水率预测 敏感性分析
在线阅读 下载PDF
基于KPCA-GA-BP模型的页岩气集输管道的内腐蚀速率预测 被引量:2
9
作者 周逸轩 彭星煜 +1 位作者 耿月华 王思汗 《腐蚀与防护》 CAS CSCD 北大核心 2024年第4期63-68,共6页
针对页岩气集输管道的内腐蚀,提出了一种基于KPCA-GA-BP组合模型的腐蚀速率预测算法。以某条页岩气集输管道的检测结果作为训练数据,运用反向传播(BP)神经网络建立预测模型,运用遗传算法(GA)优化了神经网络权值和阈值的初始值,运用核主... 针对页岩气集输管道的内腐蚀,提出了一种基于KPCA-GA-BP组合模型的腐蚀速率预测算法。以某条页岩气集输管道的检测结果作为训练数据,运用反向传播(BP)神经网络建立预测模型,运用遗传算法(GA)优化了神经网络权值和阈值的初始值,运用核主成分分析法(KPCA)对数据进行了降维,在模型建立的过程中不断优化提升模型的预测精度,采用所建模型对另一条相邻管道进行预测并开挖验证。结果表明:选择TRAINGDM作为训练函数,隐含层节点为(8,1),遗传算法进化数为50,种群规模为100,交叉概率为0.3,变异概率为0.2,运用KPCA将数据从7维降为4维后,此模型的均方误差最低为0.12,当该模型用于相邻管道的预测时,均方误差为0.14。运用KPCAGA-BP模型,对页岩气集输管道内腐蚀速率进行预测具有一定的准确性,此模型可用于辅助指导现场内腐蚀直接评价等相关工作。 展开更多
关键词 页岩气集输管道 内腐蚀速率 bp神经网络 遗传算法 核主成分分析法(KPCA) 均方误差(MSE)
在线阅读 下载PDF
基于遗传算法的BP神经网络隧道施工参数正反演分析与应用 被引量:25
10
作者 王睿 漆泰岳 +2 位作者 冯剑 雷波 李延 《铁道学报》 EI CAS CSCD 北大核心 2016年第4期98-104,共7页
相对于监测数据采集的高效性,隧道施工中对现场突发状况缺乏高效的应对措施。本文结合工程实例,采用正交表及对应三维数值计算模型,得到隧道施工参数与对应隧道变形的样本集,应用基于遗传算法的BP神经网络Matlab程序,通过对施工参数进... 相对于监测数据采集的高效性,隧道施工中对现场突发状况缺乏高效的应对措施。本文结合工程实例,采用正交表及对应三维数值计算模型,得到隧道施工参数与对应隧道变形的样本集,应用基于遗传算法的BP神经网络Matlab程序,通过对施工参数进行正演分析,实现相对高效的施工反馈;在实测数据基础上,通过进一步的反演分析,可优化施工参数,实现施工工艺的经济优选。工程应用结果表明,该方法的分析结果能够满足工程施工精度要求,有效提高施工过程中突发状况的应对效率,同时也为设计中参数的优化选择提供参考,为建立隧道工程施工的高效反馈机制提供新方法和新思路。 展开更多
关键词 遗传算法 bp神经网络 正演分析 反演分析
在线阅读 下载PDF
基于主成分分析和遗传优化BP神经网络的光伏输出功率短期预测 被引量:42
11
作者 许童羽 马艺铭 +2 位作者 曹英丽 唐瑞 陈俊杰 《电力系统保护与控制》 EI CSCD 北大核心 2016年第22期90-95,共6页
针对光伏系统输出功率的波动性和间歇性特点,提出一种基于主成分分析(PCA)和遗传算法(GA)优化的BP神经网络功率短期预测方法。通过历史功率数据和实时气象因素对输出功率进行直接预测,利用主成分分析法将多个原始变量降维成少数彼此独... 针对光伏系统输出功率的波动性和间歇性特点,提出一种基于主成分分析(PCA)和遗传算法(GA)优化的BP神经网络功率短期预测方法。通过历史功率数据和实时气象因素对输出功率进行直接预测,利用主成分分析法将多个原始变量降维成少数彼此独立的变量,作为神经网络的输入。同时利用遗传算法的全局搜索特性在解空间中定位一个较好的空间,优化BP的初始权值阈值,克服了传统BP神经网络易陷入局部极小点、学习收敛速度慢的问题。通过建立不同预测模型进行对比,验证了所提算法和模型的有效性。 展开更多
关键词 主成分分析 遗传算法 功率预测 bp神经网络 光伏系统
在线阅读 下载PDF
基于BP神经网络与遗传算法的固结磨具制作工艺参数优化 被引量:13
12
作者 张翔 王应刚 +4 位作者 陈泓谕 杭伟 曹霖霖 邓辉 袁巨龙 《表面技术》 EI CAS CSCD 北大核心 2022年第2期358-366,共9页
目的利用BP神经网络技术与遗传算法寻找固结磨具制作最优工艺参数组合,实现固结磨具制作工艺参数的快速寻优。方法设计磨粒粒径、磨粒质量分数、成型压力、烧结温度的正交工艺参数表,按正交表工艺参数制作蓝宝石晶片加工用的Cr_(2)O_(3... 目的利用BP神经网络技术与遗传算法寻找固结磨具制作最优工艺参数组合,实现固结磨具制作工艺参数的快速寻优。方法设计磨粒粒径、磨粒质量分数、成型压力、烧结温度的正交工艺参数表,按正交表工艺参数制作蓝宝石晶片加工用的Cr_(2)O_(3)固结磨具,并且设计不同固化温度下制作的固结磨具的硬度与抗压强度测试试验,验证自制的固结磨具加工的有效性以及固化温度选择的合理性。使用自制的Cr_(2)O_(3)固结磨具在抛光机上进行加工试验,测量蓝宝石晶片的去除率和Cr_(2)O_(3)丸片的磨削比。综合考虑丸片的磨削效率与使用经济性,将去除率与磨削比采用min-max方法归一化后,乘对应的权重值并相加,得到丸片综合评分Y,作为丸片的评价标准。以磨粒粒径、磨粒质量分数、成型压力、烧结温度为输入,综合评分Y为输出,建立基于神经网络的丸片制作工艺参数与丸片综合评分Y之间的BP神经网络预测模型,并使用决定系数R2评价BP神经网络的训练结果。最后,设计初始化种群个体N、交叉概率Pc、变异概率Pm的正交试验表,基于构建的神经网络,根据正交试验表,使用遗传算法进行制作工艺参数的全局寻优。依据寻优结果制作丸片并进行试验,计算综合评分Y,与预测评分对比。结果构建了4个输入层神经元、12个隐含层神经元、1个输出层神经元的三层BP神经网络。构建的BP神经网络的决定系数R2为0.9313,丸片综合评分Y的预测值与实际值的误差在4%以下,满足工程的实际应用。在给定的工艺参数范围内,在参数组合为初始化种群个体N为80、交叉概率Pc为0.6、变异概率Pm为0.06的条件下,使用遗传算法寻优得到的蓝宝石加工用Cr_(2)O_(3)固结磨具最优的制作工艺参数组合为:磨粒粒径10μm,磨粒质量分数88%,成型压力80 MPa,成型温度174℃。丸片综合评分Y的寻优值为94.09,试验得到的丸片平均综合评分Y为89.87,与寻优值的误差为5%。结论BP神经网络可以有效建立固结磨具制作工艺参数与丸片综合性能的预测模型。神经网络结合遗传算法寻优,可以为固结模具制作工艺参数组合的优化选择提供指导意义。 展开更多
关键词 固结磨具 蓝宝石 正交试验 bp神经网络 遗传算法
在线阅读 下载PDF
基于正交试验、BP神经网络和遗传算法的冷挤压模具优化设计方法 被引量:12
13
作者 杨庆华 占伟涛 +2 位作者 吴海伟 王志恒 鲍官军 《浙江工业大学学报》 CAS 北大核心 2015年第3期251-256,共6页
以桑塔纳L45449汽车轮毂轴承内圈为例,建立汽车轮毂轴承内圈冷挤压模具简化模型,运用Deform-3D软件对零件成形过程进行仿真,对挤压过程中的行程载荷和模具磨损进行分析,并据此给出模具优化设计约束条件和优化目标,提出了一套结合正交实... 以桑塔纳L45449汽车轮毂轴承内圈为例,建立汽车轮毂轴承内圈冷挤压模具简化模型,运用Deform-3D软件对零件成形过程进行仿真,对挤压过程中的行程载荷和模具磨损进行分析,并据此给出模具优化设计约束条件和优化目标,提出了一套结合正交实验法、BP人工神经网络和遗传算法的模具优化设计方法,对冷挤压汽车轮毂轴承内圈模具进行优化,并对优化结果进行有限元验证.结果表明:优化结果与仿真分析结果相近,最大行程载荷相对误差为4.55%,凹模磨损量绝对误差为0.06μm,提出的优化设计方法能有效缩短模具设计周期,降低模具制造成本. 展开更多
关键词 冷挤压 轴承内圈 有限元 正交实验 遗传算法
在线阅读 下载PDF
基于GA-BP算法的隧道围岩力学参数反分析 被引量:20
14
作者 关永平 宋建 +1 位作者 王述红 刘宇 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第2期276-278,283,共4页
建立智能位移反分析系统,用其确定隧道围岩的力学参数.针对BP神经网络易陷入局部极小值和训练时间过长等缺点,利用遗传算法全局寻优能力优化BP神经网络的权值和阈值.结合均匀设计法在围岩力学参数初始域范围内设计实验方案,这样不仅减... 建立智能位移反分析系统,用其确定隧道围岩的力学参数.针对BP神经网络易陷入局部极小值和训练时间过长等缺点,利用遗传算法全局寻优能力优化BP神经网络的权值和阈值.结合均匀设计法在围岩力学参数初始域范围内设计实验方案,这样不仅减少了迭代时间和次数,还提高了预测精度.通过对绿春坝隧道围岩力学参数的反演,验证了该方法的可靠性及适用性.将反演得出的围岩力学参数代入到数值模型中进行计算,结果表明,数值计算值与现场实际监测值的误差分别为-8.9%和4.5%. 展开更多
关键词 围岩 力学参数 反分析 均匀设计 bp神经网络 遗传算法
在线阅读 下载PDF
基于GA-BP神经网络的池塘养殖水温短期预测系统 被引量:28
15
作者 陈英义 程倩倩 +2 位作者 成艳君 于辉辉 张超 《农业机械学报》 EI CAS CSCD 北大核心 2017年第8期172-178,共7页
为解决传统的水温小样本非实时预测方法预测精度低、鲁棒性差等问题,基于物联网实时数据,提出了遗传算法(GA)优化BP神经网络的池塘养殖水温短期预测方法,并在此基础上设计开发了池塘养殖水温预测系统,首先采用主成分分析法筛选出影响池... 为解决传统的水温小样本非实时预测方法预测精度低、鲁棒性差等问题,基于物联网实时数据,提出了遗传算法(GA)优化BP神经网络的池塘养殖水温短期预测方法,并在此基础上设计开发了池塘养殖水温预测系统,首先采用主成分分析法筛选出影响池塘水温的关键影响因子,减少输入元素;然后使用遗传算法对初始权重和阈值进行优化,获取最优参数并构建了基于BP神经网络的水温预测模型;最后采用Java语言开发了基于B/S体系结构的预测系统。该系统在江苏省宜兴市河蟹养殖池塘进行了预测验证。结果表明:该系统在短期的水温预测中具有准确的预测效果,与传统的BP神经网络算法相比,研究内容评价指标平均绝对误差(MAE)、平均绝对百分误差(MAPE)和误差均方根(MSE)分别为0.196 8、0.007 9和0.059 2,均优于单一BP神经网络预测,可满足实际的养殖池塘水温管理需要。 展开更多
关键词 水产养殖 水温预测系统 主成分分析 遗传算法 bp神经网络
在线阅读 下载PDF
遗传算法优化的BP神经网络在EDXRF中对钛铁元素含量的预测 被引量:8
16
作者 王俊 刘明哲 +3 位作者 庹先国 李哲 李磊 石睿 《原子能科学技术》 EI CAS CSCD 北大核心 2015年第6期1143-1148,共6页
在能量色散X荧光分析(EDXRF)技术中,受均匀效应、颗粒效应和基体效应等的干扰,定量分析精度受到影响。本文针对这一问题提出了遗传算法(GA)优化BP神经网络(GA-BP)的混合算法,该算法无需考虑元素浓度和射线强度之间的复杂关系。遗传算法... 在能量色散X荧光分析(EDXRF)技术中,受均匀效应、颗粒效应和基体效应等的干扰,定量分析精度受到影响。本文针对这一问题提出了遗传算法(GA)优化BP神经网络(GA-BP)的混合算法,该算法无需考虑元素浓度和射线强度之间的复杂关系。遗传算法优化BP神经网络的目的是为了获得更好的网络初始权值和阈值,其基本思想是:将初始化的BP神经网络均方根误差的倒数编码为遗传算法中个体的适应度;初始的权值和阈值用遗传算法中的个体代替,然后通过选择、交叉和变异操作挑选出最优个体,最后通过解码用最优的权值和阈值创建一个新的BP网络模型。攀枝花矿区5类矿样中钛和铁含量的整体预测和分类预测实验表明,分类预测效果远好于整体预测。预测值与化学分析值比较结果表明,其中76.7%的样品相对误差小于2%,表明了该方法在元素间基体效应校正上的有效性。 展开更多
关键词 能量色散X荧光分析 定量分析 bp神经网络 遗传算法
在线阅读 下载PDF
基于特征选择和GA-BP神经网络的多源遥感农田土壤水分反演 被引量:26
17
作者 赵建辉 张晨阳 +2 位作者 闵林 李宁 王颖琳 《农业工程学报》 EI CAS CSCD 北大核心 2021年第11期112-120,共9页
土壤水分是影响水文、生态和气候等环境过程的重要参数,而微波遥感是农田地表土壤水分测量的重要手段之一。针对微波遥感反演农田地表土壤水分受植被覆盖影响较大的问题,该研究提出了一种基于特征选择和GA-BP神经网络(Genetic Algorithm... 土壤水分是影响水文、生态和气候等环境过程的重要参数,而微波遥感是农田地表土壤水分测量的重要手段之一。针对微波遥感反演农田地表土壤水分受植被覆盖影响较大的问题,该研究提出了一种基于特征选择和GA-BP神经网络(Genetic Algorithm-Back Propagation neural network)的多源遥感农田地表土壤水分反演方法。首先对Sentinel-1微波遥感数据和Sentinel-2光学遥感数据进行预处理并提取21个特征参数;然后采用差分进化特征选择(Differential Evolution Feature Selection,DEFS)算法从21个特征中选出包含10个参数的最优特征子集,并利用主成分分析(Principal Component Analysis,PCA)法将特征子集进行降维;之后建立BP神经网络,采用遗传算法(Genetic Algorithm,GA)对BP网络的节点权值进行优化,使用降维后的特征矩阵和部分实测土壤含水量数据对BP网络进行训练;最后利用训练好的GA-BP网络对研究区土壤水分进行反演,并利用实测数据对反演结果精度进行对比验证。试验结果表明,该研究反演结果的决定系数为0.7893,均方根误差为0.0287 cm^(3)/cm^(3),相比单纯使用GA-BP神经网络,加入DEFS和PCA之后决定系数提高了0.2157,同时均方根误差降低了0.0295 cm^(3)/cm^(3)。该结果展示了DEFS和PCA算法在土壤水分反演最优特征集选择的有效性,为多源遥感农田地表土壤水分反演提供了新思路。 展开更多
关键词 土壤水分 遥感 bp神经网络 遗传算法 特征选择 主成分分析
在线阅读 下载PDF
基于遗传算法和BP神经网络的花盘结构优化设计 被引量:8
18
作者 唐军 黄筱调 方成刚 《机械设计与制造》 北大核心 2011年第7期27-29,共3页
综合利用有限元法、正交试验法、BP神经网络以及遗传算法对大重型数控转台的花盘结构系统进行优化研究。首先对花盘结构系统进行谐响应动力学分析,找出对结构动态特性影响最大的模态频率,并确定BP神经网络的输入变量,然后利用正交试验... 综合利用有限元法、正交试验法、BP神经网络以及遗传算法对大重型数控转台的花盘结构系统进行优化研究。首先对花盘结构系统进行谐响应动力学分析,找出对结构动态特性影响最大的模态频率,并确定BP神经网络的输入变量,然后利用正交试验法和有限元分析法确定出BP神经网络样本点数据,建立反映花盘结构特性的BP神经网络模型,最后利用遗传算法对建立的BP神经网络优化。仿真结果表明,花盘第一阶固有频率提高15.5%,其自重降低9.8%。 展开更多
关键词 bp神经网络 遗传算法 有限元法 正交试验 结构优化
在线阅读 下载PDF
基于GA-BP的大坝渗透系数多目标反演分析方法 被引量:11
19
作者 唐少龙 熊威 +3 位作者 万小强 罗梓茗 万思源 汪庆 《中国农村水利水电》 北大核心 2020年第9期213-216,共4页
渗透系数是进行工程渗流计算分析的重要参数,针对渗透系数多目标反演问题,构建渗透系数与测点压力水头为训练样本,采用BP神经网络对大坝渗透系数进行反演;针对BP神经网络收敛速度慢、泛化能力差的缺点,通过遗传算法对BP神经网络权值、... 渗透系数是进行工程渗流计算分析的重要参数,针对渗透系数多目标反演问题,构建渗透系数与测点压力水头为训练样本,采用BP神经网络对大坝渗透系数进行反演;针对BP神经网络收敛速度慢、泛化能力差的缺点,通过遗传算法对BP神经网络权值、阈值进行优化,最终形成GA-BP神经网络多目标渗透系数反演模型,并进行实例验证。结果表明:基于GA-BP神经网络反演所得渗透系数用于渗流分析所得观测点压力水头与实测值相对误差最大为3.6%,结果合理可信,并且在收敛速度和精度上优于传统BP人工神经网络。 展开更多
关键词 GA-bp人工神经网络 GA遗传算法 多目标反演分析 正交设计 渗透系数
在线阅读 下载PDF
基于BP神经网络与遗传算法的温挤压模具优化设计 被引量:7
20
作者 孙宪萍 杨兵 +1 位作者 刘强强 王雷刚 《润滑与密封》 CAS CSCD 北大核心 2017年第4期84-88,共5页
以汽车转向螺杆类杯-杆件的温挤压凹模为例进行模具磨损分析及其寿命预测。以影响温挤压凹模磨损的4个主要因素,即凹模入口处圆角大小、模具初始硬度、模具初始温度、摩擦因子作为工艺参数,并分别选取4个不同水平值,确定四因素四水平的3... 以汽车转向螺杆类杯-杆件的温挤压凹模为例进行模具磨损分析及其寿命预测。以影响温挤压凹模磨损的4个主要因素,即凹模入口处圆角大小、模具初始硬度、模具初始温度、摩擦因子作为工艺参数,并分别选取4个不同水平值,确定四因素四水平的32组温挤压凹模磨损试验方案,通过Deform-3D有限元数值模拟软件进行成形过程的数值模拟。以不同影响因素和对应模具的磨损量为样本训练BP神经网络,建立4个主要因素与凹模磨损量之间的映射关系,以温挤压凹模磨损量为目标函数,通过遗传算法对4个影响因素进行组合优化,使凹模磨损量最小、寿命最长。 展开更多
关键词 模具磨损分析 数值模拟 bp神经网络 遗传算法
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部