A new multi-species particle swarm optimization with a two-level hierarchical topology and the orthogonal learning strategy(OMSPSO) is proposed, which enhances the global search ability of particles and increases thei...A new multi-species particle swarm optimization with a two-level hierarchical topology and the orthogonal learning strategy(OMSPSO) is proposed, which enhances the global search ability of particles and increases their convergence rates. The numerical results on 10 benchmark functions demonstrated the effectiveness of our proposed algorithm. Then, the proposed algorithm is presented to design a butterfly-shaped microstrip patch antenna. Combined with the HFSS solver, a butterfly-shaped patch antenna with a bandwidth of about 40.1% is designed by using the proposed OMSPSO. The return loss of the butterfly-shaped antenna is greater than 10 d B between 4.15 and 6.36 GHz. The antenna can serve simultaneously for the high-speed wireless computer networks(5.15–5.35 GHz) and the RFID systems(5.8 GHz).展开更多
An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorith...An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.展开更多
A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encod...A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations.展开更多
Aiming at the independent development of tracked vehicles,it is urgent to improve its mobility,passability and ride comfort,a new type of flexible road wheel with a“wheel-hinge-hub”combined structure is proposed in ...Aiming at the independent development of tracked vehicles,it is urgent to improve its mobility,passability and ride comfort,a new type of flexible road wheel with a“wheel-hinge-hub”combined structure is proposed in this study.The vibration model characteristics of the flexible road wheel were studied by the combination of numerical simulation and experiments.The superelasticity of rubber is obtained through uniaxial tensile experiment of the material and a detail three-dimensional nolinear finite element model of the flexible road wheel is established through finite element software ABAQUS.The free vibration equation of the flexible road wheel is solved by Lanczos vector direct superposition method,and its predicted modes and natural frequencies are compared with experimental results,which verifies the accuracy and reliability of the established finite element model.On this basis,the effects of various key structural or material factors on the natural frequencies of the flexible road wheel are studied using orthogonal experimental design method.Besides,the vibration modal characteristics of the flexible road wheel are also compared with those of the rigid road wheel.The research results provide a theoretical basis for the vibration and noise reduction of flexible road wheel.展开更多
Surface-enhanced Raman scattering(SERS) has been widely used as an effective technique for lowconcentration molecules detections in the past decades. This work proposes a rapid and accessible process to fabricate SERS...Surface-enhanced Raman scattering(SERS) has been widely used as an effective technique for lowconcentration molecules detections in the past decades. This work proposes a rapid and accessible process to fabricate SERS-active substrates with high uniformity and controllability based on two-step laser ablation. Laser beams directly ablate the surface of Si, concurrently creating microstructures and ejecting molten materials caused by the thermal effect that nucleate in ambient air. The nuclei grow into nanoparticles and deposit over the surface. These nanoparticles,together with microstructures, improve the light collection efficiency of the SERS-active substrates. Especially after Au thin film deposition, these nanoparticles can provide nanogaps as hotspots for SERS. By orthogonal experiment design,laser processing parameters for better performances are determined. Compared with substrates fabricated by single 1064 nm master oscillator power amplifier(MOPA) laser ablation, substrates ablated by the primary 1064 nm MOPA laser and secondary UV pulsed laser show more uniform nanoparticles’ deposition over the surface. The optimized largearea substrate has a SERS detection limit of 10^(-8)mol/L for 4-aminothiophenol(4-ATP), indicating the potential realworld applications for trace detection.展开更多
基金Project(61105067)supported by the National Natural Science Foundation of China
文摘A new multi-species particle swarm optimization with a two-level hierarchical topology and the orthogonal learning strategy(OMSPSO) is proposed, which enhances the global search ability of particles and increases their convergence rates. The numerical results on 10 benchmark functions demonstrated the effectiveness of our proposed algorithm. Then, the proposed algorithm is presented to design a butterfly-shaped microstrip patch antenna. Combined with the HFSS solver, a butterfly-shaped patch antenna with a bandwidth of about 40.1% is designed by using the proposed OMSPSO. The return loss of the butterfly-shaped antenna is greater than 10 d B between 4.15 and 6.36 GHz. The antenna can serve simultaneously for the high-speed wireless computer networks(5.15–5.35 GHz) and the RFID systems(5.8 GHz).
基金supported by the Fundamental Research Funds for the Central Universities(K50511700004)the Natural Science Basic Research Plan in Shaanxi Province of China(2013JM1022)
文摘An integer linear bilevel programming problem is firstly transformed into a binary linear bilevel programming problem, and then converted into a single-level binary implicit programming. An orthogonal genetic algorithm is developed for solving the binary linear implicit programming problem based on the orthogonal design. The orthogonal design with the factor analysis, an experimental design method is applied to the genetic algorithm to make the algorithm more robust, statistical y sound and quickly convergent. A crossover operator formed by the orthogonal array and the factor analysis is presented. First, this crossover operator can generate a smal but representative sample of points as offspring. After al of the better genes of these offspring are selected, a best combination among these offspring is then generated. The simulation results show the effectiveness of the proposed algorithm.
基金supported by the National Natural Science Foundation of China (60873099)
文摘A quadratic bilevel programming problem is transformed into a single level complementarity slackness problem by applying Karush-Kuhn-Tucker(KKT) conditions.To cope with the complementarity constraints,a binary encoding scheme is adopted for KKT multipliers,and then the complementarity slackness problem is simplified to successive quadratic programming problems,which can be solved by many algorithms available.Based on 0-1 binary encoding,an orthogonal genetic algorithm,in which the orthogonal experimental design with both two-level orthogonal array and factor analysis is used as crossover operator,is proposed.Numerical experiments on 10 benchmark examples show that the orthogonal genetic algorithm can find global optimal solutions of quadratic bilevel programming problems with high accuracy in a small number of iterations.
基金the National Natural Science Foundation of China[grant numbers 11672127,51605215]the Advance Research Special Technology Project of Army Equipment[grant number AGA19001]+2 种基金the Army Research and Technology Project[grant number AQA19001],the Innovation Fund Project of China Aerospace 1st Academy[grant number CHC20001]the Special funded project of China Postdoctoral Science Foundation[grant number 2019T120450]the Fundamental Research Funds for the Central Universities[grant number NP2020407].
文摘Aiming at the independent development of tracked vehicles,it is urgent to improve its mobility,passability and ride comfort,a new type of flexible road wheel with a“wheel-hinge-hub”combined structure is proposed in this study.The vibration model characteristics of the flexible road wheel were studied by the combination of numerical simulation and experiments.The superelasticity of rubber is obtained through uniaxial tensile experiment of the material and a detail three-dimensional nolinear finite element model of the flexible road wheel is established through finite element software ABAQUS.The free vibration equation of the flexible road wheel is solved by Lanczos vector direct superposition method,and its predicted modes and natural frequencies are compared with experimental results,which verifies the accuracy and reliability of the established finite element model.On this basis,the effects of various key structural or material factors on the natural frequencies of the flexible road wheel are studied using orthogonal experimental design method.Besides,the vibration modal characteristics of the flexible road wheel are also compared with those of the rigid road wheel.The research results provide a theoretical basis for the vibration and noise reduction of flexible road wheel.
基金Project(2020H0006) supported by the Fujian Provincial Science and Technology ProgrammeChina+2 种基金Project(62175203) supported by the National Natural Science Foundation of ChinaProject(RD2020050301) supported by the Innovation Laboratory for Science and Technology of Energy Materials of Fujian Province Applied Research ProjectChina。
文摘Surface-enhanced Raman scattering(SERS) has been widely used as an effective technique for lowconcentration molecules detections in the past decades. This work proposes a rapid and accessible process to fabricate SERS-active substrates with high uniformity and controllability based on two-step laser ablation. Laser beams directly ablate the surface of Si, concurrently creating microstructures and ejecting molten materials caused by the thermal effect that nucleate in ambient air. The nuclei grow into nanoparticles and deposit over the surface. These nanoparticles,together with microstructures, improve the light collection efficiency of the SERS-active substrates. Especially after Au thin film deposition, these nanoparticles can provide nanogaps as hotspots for SERS. By orthogonal experiment design,laser processing parameters for better performances are determined. Compared with substrates fabricated by single 1064 nm master oscillator power amplifier(MOPA) laser ablation, substrates ablated by the primary 1064 nm MOPA laser and secondary UV pulsed laser show more uniform nanoparticles’ deposition over the surface. The optimized largearea substrate has a SERS detection limit of 10^(-8)mol/L for 4-aminothiophenol(4-ATP), indicating the potential realworld applications for trace detection.