为延长电池储能系统的整体寿命,需保持储能系统中各单元的荷电状态(state of charge,SOC)均衡。为此,提出一种基于二阶一致性算法的改进下垂控制策略,通过指数函数嵌套变化系数,实现不同容量储能单元快速SOC均衡。在SOC均衡的基础上设...为延长电池储能系统的整体寿命,需保持储能系统中各单元的荷电状态(state of charge,SOC)均衡。为此,提出一种基于二阶一致性算法的改进下垂控制策略,通过指数函数嵌套变化系数,实现不同容量储能单元快速SOC均衡。在SOC均衡的基础上设计二次控制策略,在一定通信时延下实现频率、电压恢复和有功、无功功率合理分配。最后,以4台储能单元组成的电池储能系统为算例进行仿真,验证了所提控制策略的有效性,SOC能够快速收敛达到均衡状态,频率、电压能够恢复到额定值,有功、无功功率能够按照相应下垂系数比例进行分配。展开更多
锂离子电池最常用的等效电路模型为二阶RC等效电路模型。基于该模型的参数辨识存在所需辨识参数多、运算量大的缺点,同时荷电状态(state of charge,SOC)估计中状态方程存在复杂的指数运算等问题,这些都使得难以对多个串联电池进行SOC的...锂离子电池最常用的等效电路模型为二阶RC等效电路模型。基于该模型的参数辨识存在所需辨识参数多、运算量大的缺点,同时荷电状态(state of charge,SOC)估计中状态方程存在复杂的指数运算等问题,这些都使得难以对多个串联电池进行SOC的在线估计。因此,提出了一种简化二阶电池模型。该模型忽略电池内部极化反应,只关注其外特性,使得参数辨识个数减少。该简化模型也使得状态空间方程中需要估计的状态变量个数减少,避免了复杂的指数运算,降低了计算复杂度和整体的运算量,有利于多个串联锂电池SOC的实时在线估计。通过对单体锂电池和串联锂电池进行参数辨识和SOC估计测试,验证了所提的简化模型在保证参数辨识及SOC估计精度的同时,大大提升了系统运算速度,进而提高了SOC估计的快速性。展开更多
由于锂离子电池的SOC(state of charge)不能直接被测得,目前只能通过电池外部输出特性对其进行估算。以磷酸铁锂电池为研究对象,考虑到电池各种复杂的非线性特征,分析了电池的电化学阻抗特性,采用恒相位元件(CPE)对传统的等效电路模型...由于锂离子电池的SOC(state of charge)不能直接被测得,目前只能通过电池外部输出特性对其进行估算。以磷酸铁锂电池为研究对象,考虑到电池各种复杂的非线性特征,分析了电池的电化学阻抗特性,采用恒相位元件(CPE)对传统的等效电路模型进行改进,建立了分数阶(fractional order)等效电路模型;联合遗传算法和混合脉冲动力试验对分数阶等效电路模型的参数进行离线识别;基于扩展卡尔曼滤波算法,建立了分数阶扩展卡尔曼滤波算法(fractional order extended Kalman Filter)的锂电池SOC估算模型;根据动态应力试验DST(dynamic stress test)工况设计制定了锂电池充放电方案,在环境温度25℃条件下,实时采集电池电流及电压数据,将采集所得数据输入到Matlab建立的模型中,对目标电池进行SOC估算。仿真结果表明:与二阶戴维南电路模型SOC仿真结果相比,基于FEKF算法的SOC估算结果具有更高的精度且波动性更小,误差均小于0.72%,均方根误差仅为0.24%。展开更多
文摘为延长电池储能系统的整体寿命,需保持储能系统中各单元的荷电状态(state of charge,SOC)均衡。为此,提出一种基于二阶一致性算法的改进下垂控制策略,通过指数函数嵌套变化系数,实现不同容量储能单元快速SOC均衡。在SOC均衡的基础上设计二次控制策略,在一定通信时延下实现频率、电压恢复和有功、无功功率合理分配。最后,以4台储能单元组成的电池储能系统为算例进行仿真,验证了所提控制策略的有效性,SOC能够快速收敛达到均衡状态,频率、电压能够恢复到额定值,有功、无功功率能够按照相应下垂系数比例进行分配。
文摘锂离子电池最常用的等效电路模型为二阶RC等效电路模型。基于该模型的参数辨识存在所需辨识参数多、运算量大的缺点,同时荷电状态(state of charge,SOC)估计中状态方程存在复杂的指数运算等问题,这些都使得难以对多个串联电池进行SOC的在线估计。因此,提出了一种简化二阶电池模型。该模型忽略电池内部极化反应,只关注其外特性,使得参数辨识个数减少。该简化模型也使得状态空间方程中需要估计的状态变量个数减少,避免了复杂的指数运算,降低了计算复杂度和整体的运算量,有利于多个串联锂电池SOC的实时在线估计。通过对单体锂电池和串联锂电池进行参数辨识和SOC估计测试,验证了所提的简化模型在保证参数辨识及SOC估计精度的同时,大大提升了系统运算速度,进而提高了SOC估计的快速性。
文摘由于锂离子电池的SOC(state of charge)不能直接被测得,目前只能通过电池外部输出特性对其进行估算。以磷酸铁锂电池为研究对象,考虑到电池各种复杂的非线性特征,分析了电池的电化学阻抗特性,采用恒相位元件(CPE)对传统的等效电路模型进行改进,建立了分数阶(fractional order)等效电路模型;联合遗传算法和混合脉冲动力试验对分数阶等效电路模型的参数进行离线识别;基于扩展卡尔曼滤波算法,建立了分数阶扩展卡尔曼滤波算法(fractional order extended Kalman Filter)的锂电池SOC估算模型;根据动态应力试验DST(dynamic stress test)工况设计制定了锂电池充放电方案,在环境温度25℃条件下,实时采集电池电流及电压数据,将采集所得数据输入到Matlab建立的模型中,对目标电池进行SOC估算。仿真结果表明:与二阶戴维南电路模型SOC仿真结果相比,基于FEKF算法的SOC估算结果具有更高的精度且波动性更小,误差均小于0.72%,均方根误差仅为0.24%。