The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the in...In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology.展开更多
To improve the inconsistency in the analytic hierarchy process(AHP), a new method based on marginal optimization theory is proposed. During the improving process, this paper regards the reduction of consistency ratio(...To improve the inconsistency in the analytic hierarchy process(AHP), a new method based on marginal optimization theory is proposed. During the improving process, this paper regards the reduction of consistency ratio(CR) as benefit, and the maximum modification compared to the original pairwise comparison matrix(PCM) as cost, then the improvement of consistency is transformed to a benefit/cost analysis problem. According to the maximal marginal effect principle, the elements of PCM are modified by a fixed increment(or decrement) step by step till the consistency ratio becomes acceptable, which can ensure minimum adjustment to the original PCM so that the decision makers’ judgment is preserved as much as possible. The correctness of the proposed method is proved mathematically by theorem. Firstly, the marginal benefit/cost ratio is calculated for each single element of the PCM when it has been modified by a fixed increment(or decrement).Then, modification to the element with the maximum marginal benefit/cost ratio is accepted. Next, the marginal benefit/cost ratio is calculated again upon the revised matrix, and followed by choosing the modification to the element with the maximum marginal benefit/cost ratio. The process of calculating marginal effect and choosing the best modified element is repeated for each revised matrix till acceptable consistency is reached, i.e., CR<0.1. Finally,illustrative examples show the proposed method is more effective and better in preserving the original comparison information than existing methods.展开更多
A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated ...A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated as a constrained multi-objective optimization problem based on the mechanism model.A two-stage guide multi-objective particle swarm optimization(TSG-MOPSO) algorithm was proposed to solve this optimization problem,which can accelerate the convergence and guarantee the diversity of pareto-optimal front set as well.Computational experiment was conducted to compare the solution by the proposed algorithm with SIGMA-MOPSO by solving the model and with the manual solution in practice.The results indicate that the proposed algorithm shows better performance than SIGMA-MOPSO,and can improve the current manual solutions significantly.The improvements of production time and economic benefit compared with manual solutions are 10.5% and 7.3%,respectively.展开更多
To improve the dust removal performance of the wet electrostatic precipitator(WESP), a flow field optimization scheme was proposed via CFD simulation in different scales. The simplified models of perforated and collec...To improve the dust removal performance of the wet electrostatic precipitator(WESP), a flow field optimization scheme was proposed via CFD simulation in different scales. The simplified models of perforated and collection plates were determined firstly. Then the model parameters for the resistance of perforated and collection plates, obtained by small-scale flow simulation, were validated by medium-scale experiments. Through the comparison of the resistance and velocity distribution between simulation results and experimental data, the simplified model is proved to present the resistance characteristics of perforated and collection plates accurately. Numerical results show that after optimization, both the flow rate and the pressure drop in the upper room of electric field regions are basically equivalent to those of the lower room, and the velocity distribution in flue inlet of WESP becomes more uniform. Through the application in practice, the effectiveness and reliability of the optimization scheme are proved, which can provide valuable reference for further optimization of WESP.展开更多
This paper bursts the bondage of conventional no-burn thought, presents an optimum strategy permitting burn appear in grinding roughing stage, but the burning layer can be summed on the following finishing stage. On t...This paper bursts the bondage of conventional no-burn thought, presents an optimum strategy permitting burn appear in grinding roughing stage, but the burning layer can be summed on the following finishing stage. On the base of the basic grinding models, the objective function and constrained functions for the multiparameter optimum grinding models had been built in this paper. By the computer simulation, the nonlinear optimum grinding control parameters had been obtained, and the truth grinding process had been controlled by these parameters. The results of simulation and the experiments proved the exactitude of the optimum models and the feasibility of the optimum strategy. This paper had also created the precondition for the grinding automation, virtual grinding and intelligent grinding system for cylindrical grinding process.展开更多
To reduce the fuel consumption and emissions and also enhance the molten aluminum quality, a mathematical model with user-developed melting model and burning capacity model, were established according to the features ...To reduce the fuel consumption and emissions and also enhance the molten aluminum quality, a mathematical model with user-developed melting model and burning capacity model, were established according to the features of melting process of regenerative aluminum melting furnaces. Based on validating results by heat balance test for an aluminum melting furnace, CFD (computational fluid dynamics) technique, in association with statistical experimental design were used to optimize the melting process of the aluminum melting furnace. Four important factors influencing the melting time, such as horizontal angle between burners, height-to-radius ratio, natural gas mass flow and air preheated temperature, were identified by PLACKETT-BURMAN design. A steepest descent method was undertaken to determine the optimal regions of these factors. Response surface methodology with BOX-BEHNKEN design was adopted to further investigate the mutual interactions between these variables on RSD (relative standard deviation) of aluminum temperature, RSD of furnace temperature and melting time. Multiple-response optimization by desirability function approach was used to determine the optimum melting process parameters. The results indicate that the interaction between the height-to-radius ratio and horizontal angle between burners affects the response variables significantly. The predicted results show that the minimum RSD of aluminum temperature (12.13%), RSD of furnace temperature (18.50%) and melting time (3.9 h) could be obtained under the optimum conditions of horizontal angle between burners as 64°, height-to-radius ratio as 0.3, natural gas mass flow as 599 m3/h, and air preheated temperature as 639 ℃. These predicted values were further verified by validation experiments. The excellent correlation between the predicted and experimental values confirms the validity and practicability of this statistical optimum strategy.展开更多
The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previ...The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previously,they were set by the technical workers according to the offline analysis results and an empirical formula,which leads to unstable process indices and high consumption frequently.So,a multi-objective optimization model is built to maintain the balance between resource consumptions and process indices by taking technical indices and energy efficiency as objectives,where the key technical indices are predicted based on the digestion kinetics of diaspore.A multi-objective state transition algorithm(MOSTA)is improved to solve the problem,in which a self-adaptive strategy is applied to dynamically adjust the operator factors of the MOSTA and dynamic infeasible threshold is used to handle constraints to enhance searching efficiency and ability of the algorithm.Then a rule based strategy is designed to make the final decision from the Pareto frontiers.The method is integrated into an optimal control system for the industrial digestion process and tested in the actual production.Results show that the proposed method can achieve the technical target while reducing the energy consumption.展开更多
An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. M...An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. Meanwhile, the risk of early failure is high. Therefore, this paper proposes a dynamic condition-based maintenance(CBM) optimization model for mission-oriented system based on inverse Gaussian(IG) degradation process. Firstly, the IG process with random drift coefficient is used to describe the degradation process and the relevant probability distributions are obtained. Secondly, the dynamic preventive maintenance threshold(DPMT) function is used to control the early failure risk of the mission-oriented system, and the influence of imperfect preventive maintenance(PM)on the degradation amount and degradation rate is analysed comprehensively. Thirdly, according to the mission availability requirement, the probability formulas of different types of renewal policies are obtained, and the CBM optimization model is constructed. Finally, a numerical example is presented to verify the proposed model. The comparison with the fixed PM threshold model and the sensitivity analysis show the effectiveness and application value of the optimization model.展开更多
The development of high-performance non-fullerene acceptors with extended exciton diffusion lengths has positioned the sequential layer-by-layer(LBL)solution processing technique as a promising approach for fabricatin...The development of high-performance non-fullerene acceptors with extended exciton diffusion lengths has positioned the sequential layer-by-layer(LBL)solution processing technique as a promising approach for fabricating high-performance and large-area organic solar cells(OSCs).This method allows for the independent dissolution and deposition of donor and acceptor materials,enabling precise morphology control.In this review,we provide a comprehensive overview of the LBL processing technique,focusing on the morphology of the active layer.The swelling intercalation phase-separation(SIPS)model is introduced as the mainstream theory of morphology evolution,with a detailed discussion on vertical phase separation.We summarize recent strategies for morphology optimization.Additionally,we review the progress in LBL-based large-area device and module fabrication,as well as green processing approaches.Finally,we highlight current challenges and future prospects,paving the way for the commercialization of LBL-processed OSCs.展开更多
On the basis of regressional relationship between nutritional indexes and technological conditions,when confronted with feed quality that contains multiple nutritional indexes,a comprehensive equation of evaluating fe...On the basis of regressional relationship between nutritional indexes and technological conditions,when confronted with feed quality that contains multiple nutritional indexes,a comprehensive equation of evaluating feed quality was developed by using fuzzy mathematical method at first in this study,and then the optimum technological conditions were established by introduction of statistical frequency analysis method pursuant to the comprehensive evaluating equation mentioned above compared with conventional multi-aim nonlinear programming,this method can lead to easy solutions,and also can make adjustment of the importance of nutritional indexes to feed quality according to practical considerations.An example was given of soybean extruding to show how the method worked.展开更多
The heat treatable aluminum-copper alloy AA2014 finds wide application in the aerospace and defence industry due to its high strength-toweight ratio and good ductility. Friction stir welding(FSW) process, an emerging ...The heat treatable aluminum-copper alloy AA2014 finds wide application in the aerospace and defence industry due to its high strength-toweight ratio and good ductility. Friction stir welding(FSW) process, an emerging solid state joining process, is suitable for joining this alloy compared to fusion welding processes. This work presents the formulation of a mathematical model with process parameters and tool geometry to predict the responses of friction stir welds of AA 2014-T6 aluminum alloy, viz yield strength, tensile strength and ductility. The most influential process parameters considered are spindle speed, welding speed, tilt angle and tool pin profile. A four-factor, five-level central composite design was used and a response surface methodology(RSM) was employed to develop the regression models to predict the responses.The mechanical properties, such as yield strength(YS), ultimate tensile strength(UTS) and percentage elongation(%El), are considered as responses. Method of analysis of variance was used to determine the important process parameters that affect the responses. Validation trials were carried out to validate these results. These results indicate that the friction stir welds of AA 2014-T6 aluminum alloy welded with hexagonal tool pin profile have the highest tensile strength and elongation, whereas the joints fabricated with conical tool pin profile have the lowest tensile strength and elongation.展开更多
With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircr...With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircraft operational cost, is receiving increasing attention. In order to optimize the inspection interval, maintenance decision and spare provisioning together for aircraft deteriorating parts, firstly, a joint inventory management strategy is presented, then, a joint optimization of maintenance inspection and spare provisioning for aircraft parts subject to the Wiener degradation process is proposed based on the strategy.Secondly, a combination of the genetic algorithm(GA) and the Monte Carol method is developed to minimize the total cost rate.Finally, a case study is conducted and the proposed joint optimization model is compared with the existing optimization model and the airline real case. The results demonstrate that the proposed model is more beneficial and effective. In addition, the sensitivity analysis of the proposed model shows that the lead time has higher influence on the optimal results than the urgent order cost and the corrective maintenance cost, which is consistent with the actual situation of aircraft maintenance practices and inventory management.展开更多
Testing is the premise and foundation of realizing equipment health management (EHM). To address the problem that the static periodic test strategy may cause deficient test or excessive test, a dynamic sequential te...Testing is the premise and foundation of realizing equipment health management (EHM). To address the problem that the static periodic test strategy may cause deficient test or excessive test, a dynamic sequential test strategy (DSTS) for EHM is presented. Considering the situation that equipment health state is not completely observable in reality, a DSTS optimization method based on partially observable semi-Markov decision pro- cess (POSMDP) is proposed. Firstly, an equipment health state degradation model is constructed by Markov process, and the control limit maintenance policy is also introduced. Secondly, POSMDP is formulated in great detail. And then, POSMDP is converted to completely observable belief semi-Markov decision process (BSMDP) through belief state. The optimal equation and the corresponding optimal DSTS, which minimize the long-run ex- pected average cost per unit time, are obtained with BSMDP. The results of application in complex equipment show that the proposed DSTS is feasible and effective.展开更多
This paper presents a joint optimization policy of preventive maintenance(PM)and spare ordering for single-unit systems,which deteriorate subject to the delay-time concept with three deterioration stages.PM activities...This paper presents a joint optimization policy of preventive maintenance(PM)and spare ordering for single-unit systems,which deteriorate subject to the delay-time concept with three deterioration stages.PM activities that combine a non-periodic inspection scheme with age-replacement are implemented.When the system is detected to be in the minor defective stage by an inspection for the first time,place an order and shorten the inspection interval.If the system has deteriorated to a severe defective stage,it is either repaired imperfectly or replaced by a new spare.However,an immediate replacement is required once the system fails,the maximal number of imperfect maintenance(IPM)is satisfied or its age reaches to a pre-specified threshold.In consideration of the spare’s availability as needed,there are three types of decisions,i.e.,an immediate or a delayed replacement by a regular ordered spare,an immediate replacement by an expedited ordered spare with a relative higher cost.Then,some mutually independent and exclusive renewal events at the end of a renewal cycle are discussed,and the optimization model of such a joint policy is further developed by minimizing the long-run expected cost rate to find the optimal inspection and age-replacement intervals,and the maximum number of IPM.A Monte-Carlo based integration method is also designed to solve the proposed model.Finally,a numerical example is given to illustrate the proposed joint optimization policy and the performance of the Monte-Carlo based integration method.展开更多
In this work,the multi-fidelity(MF)simulation driven Bayesian optimization(BO)and its advanced form are proposed to optimize antennas.Firstly,the multiple objective targets and the constraints are fused into one compr...In this work,the multi-fidelity(MF)simulation driven Bayesian optimization(BO)and its advanced form are proposed to optimize antennas.Firstly,the multiple objective targets and the constraints are fused into one comprehensive objective function,which facilitates an end-to-end way for optimization.Then,to increase the efficiency of surrogate construction,we propose the MF simulation-based BO(MFBO),of which the surrogate model using MF simulation is introduced based on the theory of multi-output Gaussian process.To further use the low-fidelity(LF)simulation data,the modified MFBO(M-MFBO)is subsequently proposed.By picking out the most potential points from the LF simulation data and re-simulating them in a high-fidelity(HF)way,the M-MFBO has a possibility to obtain a better result with negligible overhead compared to the MFBO.Finally,two antennas are used to testify the proposed algorithms.It shows that the HF simulation-based BO(HFBO)outperforms the traditional algorithms,the MFBO performs more effectively than the HFBO,and sometimes a superior optimization result can be achieved by reusing the LF simulation data.展开更多
A multi-objective intelligent coordinating optimization strategy based on qualitative and quantitative synthetic model for Pb-Zn sintering blending process was proposed to obtain optimal mixture ratio. The mechanism a...A multi-objective intelligent coordinating optimization strategy based on qualitative and quantitative synthetic model for Pb-Zn sintering blending process was proposed to obtain optimal mixture ratio. The mechanism and neural network quantitative models for predicting compositions and rule models for expert reasoning were constructed based on statistical data and empirical knowledge. An expert reasoning method based on these models were proposed to solve blending optimization problem, including multi-objective optimization for the first blending process and area optimization for the second blending process, and to determine optimal mixture ratio which will meet the requirement of intelligent coordination. The results show that the qualified rates of agglomerate Pb, Zn and S compositions are increased by 7.1%, 6.5% and 6.9%, respectively, and the fluctuation of sintering permeability is reduced by 7.0%, which effectively stabilizes the agglomerate compositions and the permeability.展开更多
As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays,a hybrid numerical synthesis method based on adaptive principle ...As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays,a hybrid numerical synthesis method based on adaptive principle and genetic algorithm was presented in this paper.First,based on the adaptive theory,a given array was supposed as an adaptive array and its sidelobes were reduced by assigning a number of interference signals in the sidelobe region.An initial beam pattern was obtained after several iterations and adjustments of the interference intensity,and based on its parameters,a desired pattern was created.Then,an objective function based on the difference between the designed and desired patterns can be constructed.The pattern can be optimized by using the genetic algorithm to minimize the objective function.A design example for a double-circular array demonstrates the effectiveness of this method.Compared with the approaches existing before,the proposed method can reduce the sidelobe effectively and achieve less synthesis magnitude error in the mainlobe.The method can search for optimum attainable pattern for the specific elements if the desired pattern can not be found.展开更多
This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network,...This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process.展开更多
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
基金Supported by Heilongjiang Provincial Fruit Tree Modernization Agro-industrial Technology Collaborative Innovation and Promotion System Project(2019-13)。
文摘In order to obtain better quality cookies, food 3D printing technology was employed to prepare cookies. The texture, color, deformation, moisture content, and temperature of the cookie as evaluation indicators, the influences of baking process parameters, such as baking time, surface heating temperature and bottom heating temperature, on the quality of the cookie were studied to optimize the baking process parameters. The results showed that the baking process parameters had obvious effects on the texture, color, deformation, moisture content, and temperature of the cookie. All of the roasting surface heating temperature, bottom heating temperature and baking time had positive influences on the hardness, crunchiness, crispiness, and the total color difference(ΔE) of the cookie. When the heating temperatures of the surfac and bottom increased, the diameter and thickness deformation rate of the cookie increased. However,with the extension of baking time, the diameter and thickness deformation rate of the cookie first increased and then decreased. With the surface heating temperature of 180 ℃, the bottom heating temperature of 150 ℃, and baking time of 15 min, the cookie was crisp and moderate with moderate deformation and uniform color. There was no burnt phenomenon with the desired quality. Research results provided a theoretical basis for cookie manufactory based on food 3D printing technology.
基金supported by the National Natural Science Foundation of China(6160150161502521)
文摘To improve the inconsistency in the analytic hierarchy process(AHP), a new method based on marginal optimization theory is proposed. During the improving process, this paper regards the reduction of consistency ratio(CR) as benefit, and the maximum modification compared to the original pairwise comparison matrix(PCM) as cost, then the improvement of consistency is transformed to a benefit/cost analysis problem. According to the maximal marginal effect principle, the elements of PCM are modified by a fixed increment(or decrement) step by step till the consistency ratio becomes acceptable, which can ensure minimum adjustment to the original PCM so that the decision makers’ judgment is preserved as much as possible. The correctness of the proposed method is proved mathematically by theorem. Firstly, the marginal benefit/cost ratio is calculated for each single element of the PCM when it has been modified by a fixed increment(or decrement).Then, modification to the element with the maximum marginal benefit/cost ratio is accepted. Next, the marginal benefit/cost ratio is calculated again upon the revised matrix, and followed by choosing the modification to the element with the maximum marginal benefit/cost ratio. The process of calculating marginal effect and choosing the best modified element is repeated for each revised matrix till acceptable consistency is reached, i.e., CR<0.1. Finally,illustrative examples show the proposed method is more effective and better in preserving the original comparison information than existing methods.
基金Project(2006AA060201) supported by the National High Technology Research and Development Program of China
文摘A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated as a constrained multi-objective optimization problem based on the mechanism model.A two-stage guide multi-objective particle swarm optimization(TSG-MOPSO) algorithm was proposed to solve this optimization problem,which can accelerate the convergence and guarantee the diversity of pareto-optimal front set as well.Computational experiment was conducted to compare the solution by the proposed algorithm with SIGMA-MOPSO by solving the model and with the manual solution in practice.The results indicate that the proposed algorithm shows better performance than SIGMA-MOPSO,and can improve the current manual solutions significantly.The improvements of production time and economic benefit compared with manual solutions are 10.5% and 7.3%,respectively.
文摘To improve the dust removal performance of the wet electrostatic precipitator(WESP), a flow field optimization scheme was proposed via CFD simulation in different scales. The simplified models of perforated and collection plates were determined firstly. Then the model parameters for the resistance of perforated and collection plates, obtained by small-scale flow simulation, were validated by medium-scale experiments. Through the comparison of the resistance and velocity distribution between simulation results and experimental data, the simplified model is proved to present the resistance characteristics of perforated and collection plates accurately. Numerical results show that after optimization, both the flow rate and the pressure drop in the upper room of electric field regions are basically equivalent to those of the lower room, and the velocity distribution in flue inlet of WESP becomes more uniform. Through the application in practice, the effectiveness and reliability of the optimization scheme are proved, which can provide valuable reference for further optimization of WESP.
文摘This paper bursts the bondage of conventional no-burn thought, presents an optimum strategy permitting burn appear in grinding roughing stage, but the burning layer can be summed on the following finishing stage. On the base of the basic grinding models, the objective function and constrained functions for the multiparameter optimum grinding models had been built in this paper. By the computer simulation, the nonlinear optimum grinding control parameters had been obtained, and the truth grinding process had been controlled by these parameters. The results of simulation and the experiments proved the exactitude of the optimum models and the feasibility of the optimum strategy. This paper had also created the precondition for the grinding automation, virtual grinding and intelligent grinding system for cylindrical grinding process.
基金Project(2009BSXT022) supported by the Dissertation Innovation Foundation of Central South University, ChinaProject(07JJ4016) supported by Natural Science Foundation of Hunan Province, ChinaProject(U0937604) supported by National Natural Science Foundation of China
文摘To reduce the fuel consumption and emissions and also enhance the molten aluminum quality, a mathematical model with user-developed melting model and burning capacity model, were established according to the features of melting process of regenerative aluminum melting furnaces. Based on validating results by heat balance test for an aluminum melting furnace, CFD (computational fluid dynamics) technique, in association with statistical experimental design were used to optimize the melting process of the aluminum melting furnace. Four important factors influencing the melting time, such as horizontal angle between burners, height-to-radius ratio, natural gas mass flow and air preheated temperature, were identified by PLACKETT-BURMAN design. A steepest descent method was undertaken to determine the optimal regions of these factors. Response surface methodology with BOX-BEHNKEN design was adopted to further investigate the mutual interactions between these variables on RSD (relative standard deviation) of aluminum temperature, RSD of furnace temperature and melting time. Multiple-response optimization by desirability function approach was used to determine the optimum melting process parameters. The results indicate that the interaction between the height-to-radius ratio and horizontal angle between burners affects the response variables significantly. The predicted results show that the minimum RSD of aluminum temperature (12.13%), RSD of furnace temperature (18.50%) and melting time (3.9 h) could be obtained under the optimum conditions of horizontal angle between burners as 64°, height-to-radius ratio as 0.3, natural gas mass flow as 599 m3/h, and air preheated temperature as 639 ℃. These predicted values were further verified by validation experiments. The excellent correlation between the predicted and experimental values confirms the validity and practicability of this statistical optimum strategy.
基金Project(62073342)supported by the National Natural Science Foundation of ChinaProject(2014 AA 041803)supported by the Hi-tech Research and Development Program of China。
文摘The operation variables,including feed rate of ore slurry,caustic solution and live steams in the double-stream alumina digestion process,determine the product quality,process costs and the environment pollution.Previously,they were set by the technical workers according to the offline analysis results and an empirical formula,which leads to unstable process indices and high consumption frequently.So,a multi-objective optimization model is built to maintain the balance between resource consumptions and process indices by taking technical indices and energy efficiency as objectives,where the key technical indices are predicted based on the digestion kinetics of diaspore.A multi-objective state transition algorithm(MOSTA)is improved to solve the problem,in which a self-adaptive strategy is applied to dynamically adjust the operator factors of the MOSTA and dynamic infeasible threshold is used to handle constraints to enhance searching efficiency and ability of the algorithm.Then a rule based strategy is designed to make the final decision from the Pareto frontiers.The method is integrated into an optimal control system for the industrial digestion process and tested in the actual production.Results show that the proposed method can achieve the technical target while reducing the energy consumption.
基金supported by the National Natural Science Foundation of China (71901216)。
文摘An effective maintenance policy optimization model can reduce maintenance cost and system operation risk. For mission-oriented systems, the degradation process changes dynamically and is monotonous and irreversible. Meanwhile, the risk of early failure is high. Therefore, this paper proposes a dynamic condition-based maintenance(CBM) optimization model for mission-oriented system based on inverse Gaussian(IG) degradation process. Firstly, the IG process with random drift coefficient is used to describe the degradation process and the relevant probability distributions are obtained. Secondly, the dynamic preventive maintenance threshold(DPMT) function is used to control the early failure risk of the mission-oriented system, and the influence of imperfect preventive maintenance(PM)on the degradation amount and degradation rate is analysed comprehensively. Thirdly, according to the mission availability requirement, the probability formulas of different types of renewal policies are obtained, and the CBM optimization model is constructed. Finally, a numerical example is presented to verify the proposed model. The comparison with the fixed PM threshold model and the sensitivity analysis show the effectiveness and application value of the optimization model.
基金Project(22408404)supported by the National Natural Science Foundation of China。
文摘The development of high-performance non-fullerene acceptors with extended exciton diffusion lengths has positioned the sequential layer-by-layer(LBL)solution processing technique as a promising approach for fabricating high-performance and large-area organic solar cells(OSCs).This method allows for the independent dissolution and deposition of donor and acceptor materials,enabling precise morphology control.In this review,we provide a comprehensive overview of the LBL processing technique,focusing on the morphology of the active layer.The swelling intercalation phase-separation(SIPS)model is introduced as the mainstream theory of morphology evolution,with a detailed discussion on vertical phase separation.We summarize recent strategies for morphology optimization.Additionally,we review the progress in LBL-based large-area device and module fabrication,as well as green processing approaches.Finally,we highlight current challenges and future prospects,paving the way for the commercialization of LBL-processed OSCs.
文摘On the basis of regressional relationship between nutritional indexes and technological conditions,when confronted with feed quality that contains multiple nutritional indexes,a comprehensive equation of evaluating feed quality was developed by using fuzzy mathematical method at first in this study,and then the optimum technological conditions were established by introduction of statistical frequency analysis method pursuant to the comprehensive evaluating equation mentioned above compared with conventional multi-aim nonlinear programming,this method can lead to easy solutions,and also can make adjustment of the importance of nutritional indexes to feed quality according to practical considerations.An example was given of soybean extruding to show how the method worked.
基金Financial assistance from Defence Research and Development Organization(DRDO)
文摘The heat treatable aluminum-copper alloy AA2014 finds wide application in the aerospace and defence industry due to its high strength-toweight ratio and good ductility. Friction stir welding(FSW) process, an emerging solid state joining process, is suitable for joining this alloy compared to fusion welding processes. This work presents the formulation of a mathematical model with process parameters and tool geometry to predict the responses of friction stir welds of AA 2014-T6 aluminum alloy, viz yield strength, tensile strength and ductility. The most influential process parameters considered are spindle speed, welding speed, tilt angle and tool pin profile. A four-factor, five-level central composite design was used and a response surface methodology(RSM) was employed to develop the regression models to predict the responses.The mechanical properties, such as yield strength(YS), ultimate tensile strength(UTS) and percentage elongation(%El), are considered as responses. Method of analysis of variance was used to determine the important process parameters that affect the responses. Validation trials were carried out to validate these results. These results indicate that the friction stir welds of AA 2014-T6 aluminum alloy welded with hexagonal tool pin profile have the highest tensile strength and elongation, whereas the joints fabricated with conical tool pin profile have the lowest tensile strength and elongation.
基金supported by the Fundamental Research Funds for the Central Universities(NS2015072)
文摘With the wide application of condition based maintenance(CBM) in aircraft maintenance practice, the joint optimization of maintenance and inventory management, which can take full advantage of CBM and reduce the aircraft operational cost, is receiving increasing attention. In order to optimize the inspection interval, maintenance decision and spare provisioning together for aircraft deteriorating parts, firstly, a joint inventory management strategy is presented, then, a joint optimization of maintenance inspection and spare provisioning for aircraft parts subject to the Wiener degradation process is proposed based on the strategy.Secondly, a combination of the genetic algorithm(GA) and the Monte Carol method is developed to minimize the total cost rate.Finally, a case study is conducted and the proposed joint optimization model is compared with the existing optimization model and the airline real case. The results demonstrate that the proposed model is more beneficial and effective. In addition, the sensitivity analysis of the proposed model shows that the lead time has higher influence on the optimal results than the urgent order cost and the corrective maintenance cost, which is consistent with the actual situation of aircraft maintenance practices and inventory management.
基金supported by the National Natural Science Foundation of China (51175502)
文摘Testing is the premise and foundation of realizing equipment health management (EHM). To address the problem that the static periodic test strategy may cause deficient test or excessive test, a dynamic sequential test strategy (DSTS) for EHM is presented. Considering the situation that equipment health state is not completely observable in reality, a DSTS optimization method based on partially observable semi-Markov decision pro- cess (POSMDP) is proposed. Firstly, an equipment health state degradation model is constructed by Markov process, and the control limit maintenance policy is also introduced. Secondly, POSMDP is formulated in great detail. And then, POSMDP is converted to completely observable belief semi-Markov decision process (BSMDP) through belief state. The optimal equation and the corresponding optimal DSTS, which minimize the long-run ex- pected average cost per unit time, are obtained with BSMDP. The results of application in complex equipment show that the proposed DSTS is feasible and effective.
基金supported by the Naitonal Natural Science Foundation of China(71701038)China Ministry of Education Humanities and Social Sciences Research Youth Fund Project(16YJC630174)+2 种基金the Natural Science Foundation of Hebei Province(G2019501074)the Fundamental Research Funds for the Central Universities(N2123019)the Postgraduate Funding Project of PLA(JY2020B085).
文摘This paper presents a joint optimization policy of preventive maintenance(PM)and spare ordering for single-unit systems,which deteriorate subject to the delay-time concept with three deterioration stages.PM activities that combine a non-periodic inspection scheme with age-replacement are implemented.When the system is detected to be in the minor defective stage by an inspection for the first time,place an order and shorten the inspection interval.If the system has deteriorated to a severe defective stage,it is either repaired imperfectly or replaced by a new spare.However,an immediate replacement is required once the system fails,the maximal number of imperfect maintenance(IPM)is satisfied or its age reaches to a pre-specified threshold.In consideration of the spare’s availability as needed,there are three types of decisions,i.e.,an immediate or a delayed replacement by a regular ordered spare,an immediate replacement by an expedited ordered spare with a relative higher cost.Then,some mutually independent and exclusive renewal events at the end of a renewal cycle are discussed,and the optimization model of such a joint policy is further developed by minimizing the long-run expected cost rate to find the optimal inspection and age-replacement intervals,and the maximum number of IPM.A Monte-Carlo based integration method is also designed to solve the proposed model.Finally,a numerical example is given to illustrate the proposed joint optimization policy and the performance of the Monte-Carlo based integration method.
基金supported by the National Key Research and Development Program of China(2019YFB1803205)the Key Research and Development Project of Shaanxi Province(2019GY-007)+1 种基金the National Natural Science Foundation of China(61801369)the Fundamental R esearch Funds for the Central Universities(XZD012021012)。
文摘In this work,the multi-fidelity(MF)simulation driven Bayesian optimization(BO)and its advanced form are proposed to optimize antennas.Firstly,the multiple objective targets and the constraints are fused into one comprehensive objective function,which facilitates an end-to-end way for optimization.Then,to increase the efficiency of surrogate construction,we propose the MF simulation-based BO(MFBO),of which the surrogate model using MF simulation is introduced based on the theory of multi-output Gaussian process.To further use the low-fidelity(LF)simulation data,the modified MFBO(M-MFBO)is subsequently proposed.By picking out the most potential points from the LF simulation data and re-simulating them in a high-fidelity(HF)way,the M-MFBO has a possibility to obtain a better result with negligible overhead compared to the MFBO.Finally,two antennas are used to testify the proposed algorithms.It shows that the HF simulation-based BO(HFBO)outperforms the traditional algorithms,the MFBO performs more effectively than the HFBO,and sometimes a superior optimization result can be achieved by reusing the LF simulation data.
基金Project(2002CB312203) supported by the National Key Fundamental Research and Development Programof China pro-ject(60574030) supported bythe National Natural Science Foundation of China project(06FD026) supported bythe Natural Science Foun-dation of Hunan Province , China
文摘A multi-objective intelligent coordinating optimization strategy based on qualitative and quantitative synthetic model for Pb-Zn sintering blending process was proposed to obtain optimal mixture ratio. The mechanism and neural network quantitative models for predicting compositions and rule models for expert reasoning were constructed based on statistical data and empirical knowledge. An expert reasoning method based on these models were proposed to solve blending optimization problem, including multi-objective optimization for the first blending process and area optimization for the second blending process, and to determine optimal mixture ratio which will meet the requirement of intelligent coordination. The results show that the qualified rates of agglomerate Pb, Zn and S compositions are increased by 7.1%, 6.5% and 6.9%, respectively, and the fluctuation of sintering permeability is reduced by 7.0%, which effectively stabilizes the agglomerate compositions and the permeability.
文摘As conventional methods for beam pattern synthesis can not always obtain the desired optimum pattern for the arbitrary underwater acoustic sensor arrays,a hybrid numerical synthesis method based on adaptive principle and genetic algorithm was presented in this paper.First,based on the adaptive theory,a given array was supposed as an adaptive array and its sidelobes were reduced by assigning a number of interference signals in the sidelobe region.An initial beam pattern was obtained after several iterations and adjustments of the interference intensity,and based on its parameters,a desired pattern was created.Then,an objective function based on the difference between the designed and desired patterns can be constructed.The pattern can be optimized by using the genetic algorithm to minimize the objective function.A design example for a double-circular array demonstrates the effectiveness of this method.Compared with the approaches existing before,the proposed method can reduce the sidelobe effectively and achieve less synthesis magnitude error in the mainlobe.The method can search for optimum attainable pattern for the specific elements if the desired pattern can not be found.
基金Supported by UK EPSRC (grants GR/N13319 and GR/R 10875)
文摘This paper presents several neural network based modelling, reliable optimal control, and iterative learning control methods for batch processes. In order to overcome the lack of robustness of a single neural network, bootstrap aggregated neural networks are used to build reliable data based empirical models. Apart from improving the model generalisation capability, a bootstrap aggregated neural network can also provide model prediction confidence bounds. A reliable optimal control method by incorporating model prediction confidence bounds into the optimisation objective function is presented. A neural network based iterative learning control strategy is presented to overcome the problem due to unknown disturbances and model-plant mismatches. The proposed methods are demonstrated on a simulated batch polymerisation process.