This paper proposes a robust control scheme based on the sequential convex programming and learning-based model for nonlinear system subjected to additive uncertainties.For the problem of system nonlinearty and unknow...This paper proposes a robust control scheme based on the sequential convex programming and learning-based model for nonlinear system subjected to additive uncertainties.For the problem of system nonlinearty and unknown uncertainties,we study the tube-based model predictive control scheme that makes use of feedforward neural network.Based on the characteristics of the bounded limit of the average cost function while time approaching infinity,a min-max optimization problem(referred to as min-max OP)is formulated to design the controller.The feasibility of this optimization problem and the practical stability of the controlled system are ensured.To demonstrate the efficacy of the proposed approach,a numerical simulation on a double-tank system is conducted.The results of the simulation serve as verification of the effectualness of the proposed scheme.展开更多
This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration s...This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration stability in cargo transportation.The LD-ASF is further optimized for payload transportation efficiency by a novel coordinate game theory to balance competing control objectives among payload transport speed,stable end body's libration,and overall control input via model predictive control.The transfer period is divided into several sections to reduce computational burden.The validity and efficacy of the proposed LD-ASF and coordinate game-based model predictive control are demonstrated by computer simulation.Numerical results reveal that the optimized LD-ASF results in higher transportation speed,stable end body's libration,lower thrust fuel consumption,and more flexible optimization space than the classic analytical speed function.展开更多
A continuous-time nonlinear model predictive controller(NMPC) was designed for a boiler-turbine unit.The controller was designed by optimizing a receding-horizon performance index,with the nonlinear system approximate...A continuous-time nonlinear model predictive controller(NMPC) was designed for a boiler-turbine unit.The controller was designed by optimizing a receding-horizon performance index,with the nonlinear system approximated by its Taylor series expansion with a certain order,the magnitude saturation constraints on the inputs satisfied by increasing the predictive time,and the rate saturation conditions on the actuators satisfied by tuning the time constant of the reference trajectories in a reference governor.Simulation results showed that the controller can drive the drum pressure and output power of the nonlinear boiler-turbine unit to follow their respective reference trajectories throughout a varying operation range and keep the water level deviation within tolerances.Comparison of the NMPC scheme with the generic model control(GMC) scheme indicated that the responses are slower and there are more oscillations in the responses of the water level,fuel flow input and feed water flow input in the GMC scheme when the boiler-turbine unit is operating over a wide range.展开更多
A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is ...A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor.It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.展开更多
Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainti...Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.展开更多
This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power sys...This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm.展开更多
The variable air volume(VAV)air conditioning system is with strong coupling and large time delay,for which model predictive control(MPC)is normally used to pursue performance improvement.Aiming at the difficulty of th...The variable air volume(VAV)air conditioning system is with strong coupling and large time delay,for which model predictive control(MPC)is normally used to pursue performance improvement.Aiming at the difficulty of the parameter selection of VAV MPC controller which is difficult to make the system have a desired response,a novel tuning method based on machine learning and improved particle swarm optimization(PSO)is proposed.In this method,the relationship between MPC controller parameters and time domain performance indices is established via machine learning.Then the PSO is used to optimize MPC controller parameters to get better performance in terms of time domain indices.In addition,the PSO algorithm is further modified under the principle of population attenuation and event triggering to tune parameters of MPC and reduce the computation time of tuning method.Finally,the effectiveness of the proposed method is validated via a hardware-in-the-loop VAV system.展开更多
Carrier-based aircraft carrier landing is a special kind of tracking control problem and not suitable for classical control methods,which may miss the desired performance or result in overdesign.Therefore,we present a...Carrier-based aircraft carrier landing is a special kind of tracking control problem and not suitable for classical control methods,which may miss the desired performance or result in overdesign.Therefore,we present an optimal preview control for automatic carrier landing system(ACLS)by using state information of system,as well as future reference information,which can avoid the shortcomings of classical control methods.Since the flight performance of carrier-based aircraft is disturbed by air wake when the aircraft flies near the area of carrier stern,we design a disturbance rejection strategy to ensure that aircraft track the glide path with high precision and robustness.Further,carrier-based aircraft is a complex nonlinear system.However,the nonlinear model of carrier-based aircraft can be linearized at equilibrium landing state and decoupled into the longitudinal model and the lateral model.Therefore,an optimal preview control system is designed.The simulation results of a carrier-based aircraft show that the optimal preview control system can effectively suppress air wake.Tracking accuracy of optimal preview controller is higher than that of the proportional integral differential(PID)control system.展开更多
Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is t...Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is transformed into a centralized optimal control problem where collision-free conditions and mechanical limits are considered.Since the formulated optimal control problem is of large state space and highly nonlinear,an efficient hierarchical initialization technique based on the Dubins-curve method is proposed.Then,a model predictive controller is designed to track the obtained reference trajectory in the presence of initial state error and external disturbances.Numerical experiments demonstrate that the proposed“offline planningþonline tracking”framework can achieve efficient and robust coordinated taxiing planning and tracking even in the presence of initial state error and continuous external disturbances.展开更多
文摘This paper proposes a robust control scheme based on the sequential convex programming and learning-based model for nonlinear system subjected to additive uncertainties.For the problem of system nonlinearty and unknown uncertainties,we study the tube-based model predictive control scheme that makes use of feedforward neural network.Based on the characteristics of the bounded limit of the average cost function while time approaching infinity,a min-max optimization problem(referred to as min-max OP)is formulated to design the controller.The feasibility of this optimization problem and the practical stability of the controlled system are ensured.To demonstrate the efficacy of the proposed approach,a numerical simulation on a double-tank system is conducted.The results of the simulation serve as verification of the effectualness of the proposed scheme.
基金funded by the National Natural Science Foundation of China(12102487)Basic and Applied Basic Research Foundation of Guangdong Province,China(2023A1515012339)+1 种基金Shenzhen Science and Technology Program(ZDSYS20210623091808026)the Discovery Grant(RGPIN-2024-06290)of the Natural Sciences and Engineering Research Council of Canada。
文摘This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration stability in cargo transportation.The LD-ASF is further optimized for payload transportation efficiency by a novel coordinate game theory to balance competing control objectives among payload transport speed,stable end body's libration,and overall control input via model predictive control.The transfer period is divided into several sections to reduce computational burden.The validity and efficacy of the proposed LD-ASF and coordinate game-based model predictive control are demonstrated by computer simulation.Numerical results reveal that the optimized LD-ASF results in higher transportation speed,stable end body's libration,lower thrust fuel consumption,and more flexible optimization space than the classic analytical speed function.
基金the Natural Science Foundation of China (No.50636010)
文摘A continuous-time nonlinear model predictive controller(NMPC) was designed for a boiler-turbine unit.The controller was designed by optimizing a receding-horizon performance index,with the nonlinear system approximated by its Taylor series expansion with a certain order,the magnitude saturation constraints on the inputs satisfied by increasing the predictive time,and the rate saturation conditions on the actuators satisfied by tuning the time constant of the reference trajectories in a reference governor.Simulation results showed that the controller can drive the drum pressure and output power of the nonlinear boiler-turbine unit to follow their respective reference trajectories throughout a varying operation range and keep the water level deviation within tolerances.Comparison of the NMPC scheme with the generic model control(GMC) scheme indicated that the responses are slower and there are more oscillations in the responses of the water level,fuel flow input and feed water flow input in the GMC scheme when the boiler-turbine unit is operating over a wide range.
文摘A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor.It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.
基金supported by the National Key Research and Development Project of China(2018YFE0122200).
文摘Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.
基金supported by the National Natural Science Foundation of China(Grant 62103101)the Natural Science Foundation of Jiangsu Province of China(Grant BK20210217)+5 种基金the China Postdoctoral Science Foundation(Grant 2022M710680)the National Natural Science Foundation of China(Grant 62273094)the"Zhishan"Scholars Programs of Southeast Universitythe Fundamental Science(Natural Science)General Program of Jiangsu Higher Education Institutions(No.21KJB470020)the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology(No.XTCX202102)the Introduced Talents Scientific Research Start-up Fund Project,Nanjing Institute of Technology(No.YKJ202133).
文摘This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm.
基金supported by the National Natural Science Foundation of China(No.61903291)Key Research and Development Program of Shaanxi Province(No.2022NY-094)。
文摘The variable air volume(VAV)air conditioning system is with strong coupling and large time delay,for which model predictive control(MPC)is normally used to pursue performance improvement.Aiming at the difficulty of the parameter selection of VAV MPC controller which is difficult to make the system have a desired response,a novel tuning method based on machine learning and improved particle swarm optimization(PSO)is proposed.In this method,the relationship between MPC controller parameters and time domain performance indices is established via machine learning.Then the PSO is used to optimize MPC controller parameters to get better performance in terms of time domain indices.In addition,the PSO algorithm is further modified under the principle of population attenuation and event triggering to tune parameters of MPC and reduce the computation time of tuning method.Finally,the effectiveness of the proposed method is validated via a hardware-in-the-loop VAV system.
基金supported in part by the National Natural Science Foundation of China(Nos.61741313,61304223,61673209,61533008)the Jiangsu Six Peak of Talents program(No.KTHY-027)+1 种基金the Aeronautical Science Foundation(No.2016ZA 52009)the Fundamental Research Funds for the Central Universities(Nos.NJ20160026,NS2017015)
文摘Carrier-based aircraft carrier landing is a special kind of tracking control problem and not suitable for classical control methods,which may miss the desired performance or result in overdesign.Therefore,we present an optimal preview control for automatic carrier landing system(ACLS)by using state information of system,as well as future reference information,which can avoid the shortcomings of classical control methods.Since the flight performance of carrier-based aircraft is disturbed by air wake when the aircraft flies near the area of carrier stern,we design a disturbance rejection strategy to ensure that aircraft track the glide path with high precision and robustness.Further,carrier-based aircraft is a complex nonlinear system.However,the nonlinear model of carrier-based aircraft can be linearized at equilibrium landing state and decoupled into the longitudinal model and the lateral model.Therefore,an optimal preview control system is designed.The simulation results of a carrier-based aircraft show that the optimal preview control system can effectively suppress air wake.Tracking accuracy of optimal preview controller is higher than that of the proportional integral differential(PID)control system.
文摘Coordinated taxiing planning for multiple aircraft on flight deck is of vital importance which can dramatically improve the dispatching efficiency.In this paper,first,the coordinated taxiing path planning problem is transformed into a centralized optimal control problem where collision-free conditions and mechanical limits are considered.Since the formulated optimal control problem is of large state space and highly nonlinear,an efficient hierarchical initialization technique based on the Dubins-curve method is proposed.Then,a model predictive controller is designed to track the obtained reference trajectory in the presence of initial state error and external disturbances.Numerical experiments demonstrate that the proposed“offline planningþonline tracking”framework can achieve efficient and robust coordinated taxiing planning and tracking even in the presence of initial state error and continuous external disturbances.