To research the effect of the selection method of multi — objects genetic algorithm problem on optimizing result, this method is analyzed theoretically and discussed by using an autonomous underwater vehicle (AUV) as...To research the effect of the selection method of multi — objects genetic algorithm problem on optimizing result, this method is analyzed theoretically and discussed by using an autonomous underwater vehicle (AUV) as an object. A changing weight value method is put forward and a selection formula is modified. Some experiments were implemented on an AUV, TwinBurger. The results shows that this method is effective and feasible.展开更多
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa...This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.展开更多
Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex str...Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.展开更多
The selection pressure of genetic algorithm reveals the degree of balance between the global exploration and local optimization.A novel algorithm called the hybrid multi-population cellular genetic algorithm(HCGA)is p...The selection pressure of genetic algorithm reveals the degree of balance between the global exploration and local optimization.A novel algorithm called the hybrid multi-population cellular genetic algorithm(HCGA)is proposed,which combines population segmentation with particle swarm optimization(PSO).The control parameters are the number of individuals in the population and the number of subpopulations.By varying these control parameters,changes in selection pressure can be investigated.Population division is found to reduce the selection pressure.In particular,low selection pressure emerges in small and highly divided populations.Besides,slight or mild selection pressure reduces the convergence speed,and thus a new mutation operator accelerates the system.HPCGA is tested in the optimization of four typical functions and the results are compared with those of the conventional cellular genetic algorithm.HPCGA is found to significantly improve global convergence rate,convergence speed and stability.Population diversity is also investigated by HPCGA.Appropriate numbers of subpopulations not only achieve a better tradeoff between global exploration and local exploitation,but also greatly improve the optimization performance of HPCGA.It is concluded that HPCGA can elucidate the scientific basis for selecting the efficient numbers of subpopulations.展开更多
Frequency selective surface (FSS) is a two-dimensional periodic structure which has promiaent characteristics of bandpass or bandbloek when interacting with electromagnetic waves. In this paper, the thickness, the d...Frequency selective surface (FSS) is a two-dimensional periodic structure which has promiaent characteristics of bandpass or bandbloek when interacting with electromagnetic waves. In this paper, the thickness, the dielectric constant, the element graph and the arrangement periodicity of an FSS medium are investigated by Genetic Algorithm (GA) when an electromagnetic wave is incident on the FSS at a wide angle, and an optimized FSS structure and transmission characteristics are obtained. The results show that the optimized structure has better stability in relation to incident angle of electromagnetic wave and preserves the stability of centre frequency even at an incident angle as large as 80°, thereby laying the foundation for the application of FSS to curved surfaces at wide angles.展开更多
A bi-objective optimization problem for flapping airfoils is solved to maximize the time-averaged thrust coefficient and the propulsive efficiency. Design variables include the plunging amplitude, the pitching amplitu...A bi-objective optimization problem for flapping airfoils is solved to maximize the time-averaged thrust coefficient and the propulsive efficiency. Design variables include the plunging amplitude, the pitching amplitude and the phase shift angle. A well defined Kriging model is used to substitute the time-consuming high fidelity model, and a multi-objective genetic algorithm is employed as the search algorithm. The optimization results show that the propulsive efficiency can be improved by reducing the plunging amplitude and the phase shift angle in a proper way. The results of global sensitivity analysis using the Sobol’s method show that both of the time-averaged thrust coefficient and the propulsive efficiency are most sensitive to the plunging amplitude, and second most sensitive to the pitching amplitude. It is also observed that the phase shift angle has an un-negligible influence on the propulsive efficiency, and has little effect on the time-averaged thrust coefficient.展开更多
In this dissertation, un-powered gliding aircraft's optimal extended rangeproblem is discussed. The aircraft movement model was built. According to the degree of coupling, the model can be classified into a simple mo...In this dissertation, un-powered gliding aircraft's optimal extended rangeproblem is discussed. The aircraft movement model was built. According to the degree of coupling, the model can be classified into a simple model or a complicated model. Using an optimal control method, two different movement models gave out the aircraft's attitude angle optimal flight path. Complicated model's optimal solution can be found by the genetic algorithm. This method can transfer the analytic solution of complicated model to a numerical value solution. Comparing the simulation results of different methods, it showed that the genetic algorithm combined with the complicated model's numerical value solution had the best performance in control strategy. This method solved the problem in which the highly coupling complicated model's analytic solution was hard to obtain. It verified that the genetic algorithm has validity in the field of extended range solution searching.展开更多
文摘To research the effect of the selection method of multi — objects genetic algorithm problem on optimizing result, this method is analyzed theoretically and discussed by using an autonomous underwater vehicle (AUV) as an object. A changing weight value method is put forward and a selection formula is modified. Some experiments were implemented on an AUV, TwinBurger. The results shows that this method is effective and feasible.
基金This paper is supported by the Nature Science Foundation of Heilongjiang Province.
文摘This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum.
文摘Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.
基金Supported by National Natural Science Foundation of China(61262019)the Aeronautical Science Foundation of China(2012ZA56001)+2 种基金the Natural Science Foundation of Jiangxi Province(20114BAB201046)the Science and Technology Research Project of Jiangxi Provincial Department of Education(GJJ12435)the Open-End Foundation of the Key Laboratory of Nondestructive Testing(Ministry of Education)
文摘The selection pressure of genetic algorithm reveals the degree of balance between the global exploration and local optimization.A novel algorithm called the hybrid multi-population cellular genetic algorithm(HCGA)is proposed,which combines population segmentation with particle swarm optimization(PSO).The control parameters are the number of individuals in the population and the number of subpopulations.By varying these control parameters,changes in selection pressure can be investigated.Population division is found to reduce the selection pressure.In particular,low selection pressure emerges in small and highly divided populations.Besides,slight or mild selection pressure reduces the convergence speed,and thus a new mutation operator accelerates the system.HPCGA is tested in the optimization of four typical functions and the results are compared with those of the conventional cellular genetic algorithm.HPCGA is found to significantly improve global convergence rate,convergence speed and stability.Population diversity is also investigated by HPCGA.Appropriate numbers of subpopulations not only achieve a better tradeoff between global exploration and local exploitation,but also greatly improve the optimization performance of HPCGA.It is concluded that HPCGA can elucidate the scientific basis for selecting the efficient numbers of subpopulations.
基金Project supported by the National Natural Science Foundation of China (Grant No 10647105)
文摘Frequency selective surface (FSS) is a two-dimensional periodic structure which has promiaent characteristics of bandpass or bandbloek when interacting with electromagnetic waves. In this paper, the thickness, the dielectric constant, the element graph and the arrangement periodicity of an FSS medium are investigated by Genetic Algorithm (GA) when an electromagnetic wave is incident on the FSS at a wide angle, and an optimized FSS structure and transmission characteristics are obtained. The results show that the optimized structure has better stability in relation to incident angle of electromagnetic wave and preserves the stability of centre frequency even at an incident angle as large as 80°, thereby laying the foundation for the application of FSS to curved surfaces at wide angles.
基金Supported by the National Science Foundation for Post-doctoral Scientists of China (20090460216 )the National Defense Fundamental Research Foundation of China(B222006060)
文摘A bi-objective optimization problem for flapping airfoils is solved to maximize the time-averaged thrust coefficient and the propulsive efficiency. Design variables include the plunging amplitude, the pitching amplitude and the phase shift angle. A well defined Kriging model is used to substitute the time-consuming high fidelity model, and a multi-objective genetic algorithm is employed as the search algorithm. The optimization results show that the propulsive efficiency can be improved by reducing the plunging amplitude and the phase shift angle in a proper way. The results of global sensitivity analysis using the Sobol’s method show that both of the time-averaged thrust coefficient and the propulsive efficiency are most sensitive to the plunging amplitude, and second most sensitive to the pitching amplitude. It is also observed that the phase shift angle has an un-negligible influence on the propulsive efficiency, and has little effect on the time-averaged thrust coefficient.
基金Supported by the National Natural Science Foundation of China(11172071)
文摘In this dissertation, un-powered gliding aircraft's optimal extended rangeproblem is discussed. The aircraft movement model was built. According to the degree of coupling, the model can be classified into a simple model or a complicated model. Using an optimal control method, two different movement models gave out the aircraft's attitude angle optimal flight path. Complicated model's optimal solution can be found by the genetic algorithm. This method can transfer the analytic solution of complicated model to a numerical value solution. Comparing the simulation results of different methods, it showed that the genetic algorithm combined with the complicated model's numerical value solution had the best performance in control strategy. This method solved the problem in which the highly coupling complicated model's analytic solution was hard to obtain. It verified that the genetic algorithm has validity in the field of extended range solution searching.