Energy transmission efficiency in the magnetic pulse generators varies with saturated time of magnetic switch. An optimal matching time exists and depends on the compression ratio, under which, the energy transmission...Energy transmission efficiency in the magnetic pulse generators varies with saturated time of magnetic switch. An optimal matching time exists and depends on the compression ratio, under which, the energy transmission efficiency can reach approximate 100%. The equation of required magnetic core volume is obtained by taken into account the optimal matching mode. It indicates that a great reduction on the volume is feasible under the optimal matching mode. The circuit simulation code-PSPICE is also introduced to simulate a 3-stage magnetic pulse compressor, and the results are in accordance with those of equivalent circuit analyses.展开更多
By using the weight function method,the matching parameters of the half discrete Hilbert type multiple integral inequality with a non-homogeneous kernel K(n,||x||ρ,m)=G(nλ1||x||ρmλ,2)are discussed,some equivalent ...By using the weight function method,the matching parameters of the half discrete Hilbert type multiple integral inequality with a non-homogeneous kernel K(n,||x||ρ,m)=G(nλ1||x||ρmλ,2)are discussed,some equivalent conditions of the optimal matching parameter are established,and the expression of the optimal constant factor is obtained.Finally,their applications in operator theory are considered.展开更多
Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet s...Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet static supporting stability and dynamic terrain adaptability through the utilization of the Rigid-Elastic Hybrid(REH)dynamics model.First,a bionic foot model,named the Hinge Tension Elastic Complex(HTEC)model,was developed by extracting key features from human feet.Furthermore,the kinematics and REH dynamics of the HTEC model were established.Based on the foot dynamics,a nonlinear optimization method for stiffness matching(NOSM)was designed.Finally,the HTEC-based foot was constructed and applied onto BHR-B2 humanoid robot.The foot static stability is achieved.The enhanced adaptability is observed as the robot traverses square steel,lawn,and cobblestone terrains.Through proposed design method and structure,the mobility of the humanoid robot is improved.展开更多
基金supported by the High Technology Resesarch Development Project of China (863)
文摘Energy transmission efficiency in the magnetic pulse generators varies with saturated time of magnetic switch. An optimal matching time exists and depends on the compression ratio, under which, the energy transmission efficiency can reach approximate 100%. The equation of required magnetic core volume is obtained by taken into account the optimal matching mode. It indicates that a great reduction on the volume is feasible under the optimal matching mode. The circuit simulation code-PSPICE is also introduced to simulate a 3-stage magnetic pulse compressor, and the results are in accordance with those of equivalent circuit analyses.
基金Supported by National Natural Science Foundation of China(Grant No.12071491)Guangzhou Science and Technology Plan Project(Grant No.202102080177).
文摘By using the weight function method,the matching parameters of the half discrete Hilbert type multiple integral inequality with a non-homogeneous kernel K(n,||x||ρ,m)=G(nλ1||x||ρmλ,2)are discussed,some equivalent conditions of the optimal matching parameter are established,and the expression of the optimal constant factor is obtained.Finally,their applications in operator theory are considered.
基金supported by the National Natural Science Foundation of China(Grant No.62073041)the Open Fund of Laboratory of Aerospace Servo Actuation and Transmission(Grant No.LASAT-2023A04)the Fundamental Research Funds for the Central Universities(Grant Nos.2024CX06011,2024CX06079)。
文摘Passive bionic feet,known for their human-like compliance,have garnered attention for their potential to achieve notable environmental adaptability.In this paper,a method was proposed to unifying passive bionic feet static supporting stability and dynamic terrain adaptability through the utilization of the Rigid-Elastic Hybrid(REH)dynamics model.First,a bionic foot model,named the Hinge Tension Elastic Complex(HTEC)model,was developed by extracting key features from human feet.Furthermore,the kinematics and REH dynamics of the HTEC model were established.Based on the foot dynamics,a nonlinear optimization method for stiffness matching(NOSM)was designed.Finally,the HTEC-based foot was constructed and applied onto BHR-B2 humanoid robot.The foot static stability is achieved.The enhanced adaptability is observed as the robot traverses square steel,lawn,and cobblestone terrains.Through proposed design method and structure,the mobility of the humanoid robot is improved.