期刊文献+
共找到448篇文章
< 1 2 23 >
每页显示 20 50 100
Thickness of excavation damaged zone estimation using four novel hybrid ensemble learning models : A case study of Xiangxi Gold Mine and Fankou Lead-zinc Mine in China
1
作者 LIU Lei-lei HONG Zhi-xian +1 位作者 ZHAO Guo-yan LIANG Wei-zhang 《Journal of Central South University》 CSCD 2024年第11期3965-3982,共18页
Underground excavation can lead to stress redistribution and result in an excavation damaged zone(EDZ),which is an important factor affecting the excavation stability and support design.Accurately estimating the thick... Underground excavation can lead to stress redistribution and result in an excavation damaged zone(EDZ),which is an important factor affecting the excavation stability and support design.Accurately estimating the thickness of EDZ is essential to ensure the safety of the underground excavation.In this study,four novel hybrid ensemble learning models were developed by optimizing the extreme gradient boosting(XGBoost)and random forest(RF)algorithms through simulated annealing(SA)and Bayesian optimization(BO)approaches,namely SA-XGBoost,SA-RF,BO XGBoost and BO-RF models.A total of 210 cases were collected from Xiangxi Gold Mine in Hunan Province and Fankou Lead-zinc Mine in Guangdong Province,China,including seven input indicators:embedding depth,drift span,uniaxial compressive strength of rock,rock mass rating,unit weight of rock,lateral pressure coefficient of roadway and unit consumption of blasting explosive.The performance of the proposed models was evaluated by the coefficient of determination,root mean squared error,mean absolute error and variance accounted for.The results indicated that the SA-XGBoost model performed best.The Shapley additive explanations method revealed that the embedding depth was the most important indicator.Moreover,the convergence curves suggested that the SA-XGBoost model can reduce the generalization error and avoid overfitting. 展开更多
关键词 excavation damaged zone machine learning simulated annealing Bayesian optimization extreme gradient boosting random forest
在线阅读 下载PDF
基于电力系统受扰后频率最低点预测的一次调频优化研究 被引量:1
2
作者 张国斌 沈烨昱 +3 位作者 霍红岩 郭瑞君 牛玉广 柳双翠 《太阳能学报》 北大核心 2025年第5期89-98,共10页
为了提升新型电力系统下的频率稳定性,提出一种基于电力系统受扰后频率最低点预测的一次调频优化方法。首先为了准确预测电力系统受到扰动后的频率变化特征,分析频率偏差的产生机理,选取切机等功率不平衡事件的相关影响变量,结合极限学... 为了提升新型电力系统下的频率稳定性,提出一种基于电力系统受扰后频率最低点预测的一次调频优化方法。首先为了准确预测电力系统受到扰动后的频率变化特征,分析频率偏差的产生机理,选取切机等功率不平衡事件的相关影响变量,结合极限学习机(ELM),建立基于ELM神经网络的电力系统频率最低点预测模型,并采用蜣螂算法(DBO)对ELM优化输入权值和隐含层阈值,降低ELM随机生成参数的不稳定性。然后设计基于预测信号的一次调频优化策略。在IEEE 39节点上开展仿真试验,结果显示DBO-ELM算法在预测频率最低点时具有更快的计算速度、更强的泛化能力以及更高的预测精度,所提的一次调频优化策略能有效提升频率稳定性,可为电力系统大频差扰动提供解决方案。 展开更多
关键词 预测模型 电力系统 一次调频 极限学习机 蜣螂算法 频率最低点
在线阅读 下载PDF
基于IMLZC和SOA-ELM的轴承损伤识别方法 被引量:1
3
作者 龙有强 姜峰 《机电工程》 北大核心 2025年第4期726-734,共9页
现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测... 现有故障诊断方法大多是仅针对轴承故障类型进行分析,而缺少对故障程度进行相应的判断。为此,提出了一种基于改进多尺度Lempel-Ziv复杂度(IMLZC)和海鸥优化算法优化极限学习机(SOA-ELM)的滚动轴承损伤识别方法。首先,利用IMLZC复杂度测量指标对信号复杂度变化敏感的特点,将其用于提取滚动轴承振动信号的故障特征以构造特征矩阵;然后,利用海鸥优化算法对极限学习机(ELM)的关键参数进行了优化,建立了参数自适应优化的ELM分类模型;最后,将故障特征输入至SOA-ELM分类模型中进行了训练和测试,完成了滚动轴承不同故障状态的智能诊断和故障程度评估,利用滚动轴承和自吸式离心泵损伤振动信号对IMLZC-SOA-ELM模型的实用性和泛化性开展了研究,并将其与其他特征提取模型开展了对比。研究结果表明:基于IMLZC-SOA-ELM的故障诊断方法不仅能够准确识别滚动轴承的故障,而且能判断故障的严重程度,该故障诊断模型在诊断滚动轴承的故障时分别取得了100%和98.4%的识别准确率,平均识别准确率达到了99.9%,能够有效识别滚动轴承的故障类型和故障程度。与其他特征提取方法相比,IMLZC-SOA-ELM模型具有更高的识别准确率,更适合于滚动轴承的故障识别。 展开更多
关键词 滚动轴承 自吸式离心泵 故障诊断 故障程度和损伤程度 改进多尺度Lempel-Ziv复杂度 海鸥优化算法 参数最优极限学习机
在线阅读 下载PDF
基于GA-RELM多特征优选的烟叶多部位正反面识别方法 被引量:2
4
作者 陈婷 赵晓琳 +5 位作者 张冀武 盖小雷 张晓伟 刘宇晨 王燕 龙杰 《湖南农业大学学报(自然科学版)》 北大核心 2025年第1期113-122,共10页
针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构... 针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构建正反面数据集,根据特征重要性和特征间的潜在关系,实现特征降维并构建新特征组合。其次,对正则化极限学习机(RELM)进行隐藏层偏置寻优,以提高模型实际应用性和分类精度。结果表明:与原极限学习机(ELM)相比,GA-RELM对自然状态下的烟叶正反面和多部位正反面的分类精度分别提高了0.84%和7.88%,运算时间分别减少2.56 s和5.72 s;与其他烟叶分级算法相比,GA-RELM在准确率、精确率、召回率、F1评分等多个指标上表现出明显优势。 展开更多
关键词 烤烟 烟叶分级 多特征优选 遗传算法 正则化极限学习机
在线阅读 下载PDF
有色金属行业碳排放情景预测研究——以陕西省为例
5
作者 杨玮 张林怡 +3 位作者 龙涛 邓莎 杨超 雷永康 《安全与环境学报》 北大核心 2025年第7期2858-2866,共9页
科学识别碳排放的主要影响因素并准确预测碳排放峰值对实现“双碳”目标具有重要意义。研究以能源、资源供应大省——陕西省为例,基于1997—2021年陕西省经济社会发展和有色金属能源消费数据,运用Lasso回归模型识别影响陕西省有色金属... 科学识别碳排放的主要影响因素并准确预测碳排放峰值对实现“双碳”目标具有重要意义。研究以能源、资源供应大省——陕西省为例,基于1997—2021年陕西省经济社会发展和有色金属能源消费数据,运用Lasso回归模型识别影响陕西省有色金属行业碳排放的主要影响因素,并通过构建粒子群算法(Particle Swarm Optimization, PSO)优化的深度极限学习机(Deep Extreme Learning Machine, DELM)模型对陕西省有色金属行业2022—2035年的碳排放进行情景预测。结果显示:省经济增速、能源消费总量、能源强度等6个因素是影响陕西省有色金属行业碳排放的主要因素;PSO-DELM模型的预测精度比DELM模型更高,其决定系数、平均绝对百分比误差、平均绝对误差和均方根误差分别为0.99、0.36%、0.02和0.03。情景预测结果表明,在低碳、基准和高碳情景下,陕西省有色金属行业碳排放将分别于2028年、2032年和2034年达峰,峰值分别为280.05万t、432.05万t和616.23万t。 展开更多
关键词 环境工程学 Lasso回归 深度极限学习机 粒子群优化算法 碳排放 情景预测
在线阅读 下载PDF
基于PSO-ELM的不同温湿度条件下叶丝干燥入口水分控制研究
6
作者 李自娟 李宜馨 +7 位作者 吕萱 赵海洋 孙朔 冯子贤 高杨 赵力源 呼守宇 陈娇娇 《中国烟草学报》 北大核心 2025年第3期60-69,共10页
【目的】控制不同温湿度条件下叶丝干燥入口水分的品质,促进叶丝干燥过程的稳定及成品烟丝质量的提高。【方法】使用K-means聚类分析划分温湿度区间,利用统计分析对不同温湿度区间下叶丝干燥入口水分进行品质区分,构建不同温湿度条件下... 【目的】控制不同温湿度条件下叶丝干燥入口水分的品质,促进叶丝干燥过程的稳定及成品烟丝质量的提高。【方法】使用K-means聚类分析划分温湿度区间,利用统计分析对不同温湿度区间下叶丝干燥入口水分进行品质区分,构建不同温湿度条件下叶丝干燥入口水分分类模型,并根据分类模型选取最佳工艺参数。【结果】(1)全年可分为4、5月为中温低湿,6、7、8月为高温高湿,9、10月为中温中湿,其它为低温中湿4个区间,且不同温湿度区间下叶丝干燥入口水分存在显著差异;(2)不同温湿度区间下叶丝干燥入口水分离散化处理后分为劣品质(其它)、中等品质(水分偏低μ-1.5σ~μ-0.5σ)、高品质(μ-0.5σ~μ+0.5σ)和中等品质(水分偏高μ+0.5σ~μ+1.5σ)4个品质类别;(3)不同温湿度区间干燥入口水分分类模型PSO-ELM效果均优于GS-SVM和GS-RF,其各温湿度区间的准确率、精确度和召回率均在90%以上,F1分数均在0.90以上;(4)PSO-ELM模型选取出最大化高品质入口水分的工艺参数运用于实际生产后,不同温湿度条件下的叶丝干燥入口水分标准差均降低了40%~50%,高品质入口水分的占比显著增高,其中中温低湿和低温中湿区的占比分别增加了38.9%和60%。 展开更多
关键词 叶丝干燥 温湿度 粒子群 极限学习机
在线阅读 下载PDF
基于泊松噪声和优化极限学习机的多因素混合学习方法及应用
7
作者 蒋锋 路畅 王辉 《统计与决策》 北大核心 2025年第1期52-57,共6页
针对风电功率数据高波动性和间歇性的特点,文章提出了一种基于泊松噪声的互补集合经验模态分解(CEEMDPN)和改进的蛇优化算法(MSO)优化极限学习机的多因素混合学习方法。首先,利用CEEMDPN将风电功率序列分解为子序列;然后,引入曲线自适... 针对风电功率数据高波动性和间歇性的特点,文章提出了一种基于泊松噪声的互补集合经验模态分解(CEEMDPN)和改进的蛇优化算法(MSO)优化极限学习机的多因素混合学习方法。首先,利用CEEMDPN将风电功率序列分解为子序列;然后,引入曲线自适应调整参数改进蛇优化算法;最后,运用MSO优化的极限学习机(ELM)对每个子序列进行预测并集成。为了验证CEEMDPN-MSO-ELM模型的有效性,采用龙源电力集团的风电功率数据进行超短期预测,实证结果表明,CEEMDPN算法能够加强风电功率序列的主频率部分并提高分解精度,MSO算法能够很好地平衡算法的寻优速度与收敛精度,从而有效提升ELM模型的预测性能,所提模型的预测精度和稳健性均优于其他对比模型。 展开更多
关键词 超短期风电功率预测 互补集合经验模态分解 蛇优化算法 极限学习机
在线阅读 下载PDF
基于NSWOA-ELM算法的水稻冠层氮素含量反演方法
8
作者 于丰华 曹慧妮 +4 位作者 金忠煜 王楠 李世隆 孙道明 许童羽 《农业机械学报》 北大核心 2025年第7期532-540,共9页
以水稻为研究对象,获取波长400~1 000 nm范围内的水稻冠层高光谱反射率。采用Savitzky-Golay卷积平滑方法对高光谱数据进行预处理,并通过连续投影算法(Successive projections algorithm,SPA)选择特征波长。在此基础上,提出了一种基于... 以水稻为研究对象,获取波长400~1 000 nm范围内的水稻冠层高光谱反射率。采用Savitzky-Golay卷积平滑方法对高光谱数据进行预处理,并通过连续投影算法(Successive projections algorithm,SPA)选择特征波长。在此基础上,提出了一种基于多目标鲸鱼优化算法(Non-dominated Sorting whale optimization algorithm,NSWOA)优化的极限学习机(Extreme learning machine,ELM)模型,用于反演水稻冠层氮素含量。利用误差反向传播神经网络(Back propagation neural network,BPNN)和ELM模型,与NSWOA优化后的ELM模型进行对比。结果表明,SPA算法筛选出的特征波长为400、440、487、542、589、660、675、739、766、808、878、912、949 nm。使用筛选后的特征波长反射率构建NSWOA-ELM水稻冠层氮素含量反演模型效果最好,训练集R^(2)为0.859 3,RMSE为0.200 2 mg/g;验证集R^(2)为0.854 3,RMSE为0.206 9 mg/g。与BP神经网络和ELM模型相比,NSWOA-ELM在预测能力和模型稳定性方面具有显著优势。综上,基于NSWOA-ELM的水稻冠层氮素含量反演模型能够为水稻生长状况的描述及精准施肥提供可靠支持。 展开更多
关键词 水稻冠层 氮素 高光谱 多目标鲸鱼优化算法 极限学习机
在线阅读 下载PDF
基于算法优化极限学习机的香芋皮改性膳食纤维制备及其NO_(2)^(-)吸附量预测
9
作者 邓忠惠 谢微 《中国无机分析化学》 北大核心 2025年第6期889-897,共9页
在响应面法的基础上,收集所有实验数据,包括工艺参数和NO_(2)^(-)吸附量。对数据进行预处理,选择合适的输入变量(料液比、盐酸浓度、反应温度和反应时间),使用训练数据建立初始ELM模型。采用遗传算法(GA)、粒子群优化算法(PSO)、麻雀搜... 在响应面法的基础上,收集所有实验数据,包括工艺参数和NO_(2)^(-)吸附量。对数据进行预处理,选择合适的输入变量(料液比、盐酸浓度、反应温度和反应时间),使用训练数据建立初始ELM模型。采用遗传算法(GA)、粒子群优化算法(PSO)、麻雀搜索算法(SSA)、灰狼优化算法(GWO)和海鸥算法(SOA)对ELM进行优化。使用训练数据集对优化后的ELM模型进行训练。使用测试数据集对模型进行验证,评估模型的性能指标。结果显示,5种优化后的ELM模型在各项性能指标上均优于初始ELM模型。在5种优化算法中,SSA-ELM模型表现最为显著,其绝对误差(MAE)、均方误差(MSE)、均方误差根(RMSE)、平均绝对百分比误差(MAPE)分别为0.023498、0.0007391、0.027186和0.037267%,是所有优化算法测试模型中最低值。在测试模型中,原始ELM模型的R^(2)为0.013291,而GA-ELM、PSO-ELM、SSA-ELM、GWO-ELM和SOA-ELM模型的R^(2)分别0.86709、0.98016、0.99971、0.99998和0.99969。这表明5种优化ELM模型具有更高的拟合度、更好的泛化能力和稳定性,且相对于原始ELM模型,R^(2)值有显著提升。优化后的ELM模型,可以快速、准确地预测不同工艺条件下香芋皮改性膳食纤维的NO_(2)^(-)吸附量,减少实验成本和时间,提高生产效率和产品质量,为实际应用提供可靠的预测工具。 展开更多
关键词 香芋皮改性膳食纤维 响应面法 极限学习机 算法优化 预测
在线阅读 下载PDF
基于IEO-MKELM模型的重整产品辛烷值软测量方法
10
作者 陈晓彦 赵超 +2 位作者 付斌 李卫东 范克威 《石油与天然气化工》 北大核心 2025年第4期131-139,共9页
目的针对催化重整产品辛烷值测量实时性较差的问题,提出基于改进平衡优化器算法的多核极限学习机(IEOMKELM)辛烷值软测量模型。方法采用混沌映射、反向学习策略、优化非线性因子、莱维飞行和贪心选择策略优化基础平衡算法,获得具有更高... 目的针对催化重整产品辛烷值测量实时性较差的问题,提出基于改进平衡优化器算法的多核极限学习机(IEOMKELM)辛烷值软测量模型。方法采用混沌映射、反向学习策略、优化非线性因子、莱维飞行和贪心选择策略优化基础平衡算法,获得具有更高全局和局部搜索能力的改进平衡算法(IEO)。随后将这一改进后的平衡优化算法应用于多核极限学习机(MKELM)多项参数的优化,进而建立了催化重整产品辛烷值软测量模型。结果利用某炼化企业的实测数据对模型精度进行验证,结果表明,由IEO-MKELM模型得到的预测值与实测值间的误差在10^(−3)数量级以下,与其他同类模型相比,IEO-MKELM模型具有更高的预测精度。结论基于IEO-MKELM的辛烷值软测量方法研究对于提高催化重整生产过程的自动化水平具有重要意义。 展开更多
关键词 IEO-MKELM 平衡优化算法 多核极限学习机 辛烷值 软测量 预测模型
在线阅读 下载PDF
基于容量增量分析与VMD-GWO-KELM的锂电池健康状态估计
11
作者 陈峥 多功东 +3 位作者 申江卫 沈世全 刘昱 魏福星 《储能科学与技术》 北大核心 2025年第6期2476-2487,共12页
为克服传统健康状态估计方法中的特征提取质量不足、非线性特性复杂及模型参数优化困难等问题,本工作提出一种基于容量增量分析与VMD-GWO-KELM的健康状态估计方法。首先,本工作通过改进的基于洛伦兹函数的电压容量模型,对电池恒流充电... 为克服传统健康状态估计方法中的特征提取质量不足、非线性特性复杂及模型参数优化困难等问题,本工作提出一种基于容量增量分析与VMD-GWO-KELM的健康状态估计方法。首先,本工作通过改进的基于洛伦兹函数的电压容量模型,对电池恒流充电过程中的电压-容量数据进行拟合,提取峰电压、峰值和峰面积等健康特征,并利用灰狼优化算法完成模型参数识别,从而有效提升了特征提取质量和鲁棒性。其次,采用变分模态分解技术对健康状态信号进行多尺度分解,将模态分量作为独立子模型的输入,捕捉不同频域的关键特性,降低了信号混叠和噪声影响。然后,结合灰狼优化算法对核极限学习机模型的关键参数进行优化,显著提高了非线性拟合能力和估计精度。最后,通过不同训练量、不同估计模型对比和多电池数据的验证,全面评估模型性能。实验结果表明,本工作提出的算法在仅使用100次循环数据的情况下,即可实现高精度健康状态估计,平均绝对误差为0.9751%,最大误差为1.9340%,同时表现出良好的鲁棒性和泛化能力。 展开更多
关键词 锂离子电池 健康状态 容量增量分析 变分模态分解 灰狼优化 核极限学习机
在线阅读 下载PDF
基于最小二乘孪生极限学习机的水电系统发电能力预测方法
12
作者 李旻 孙大雁 +3 位作者 梁志峰 过夏明 吴刚 苗树敏 《水利水电技术(中英文)》 北大核心 2025年第8期162-174,共13页
【目的】针对传统水电发电能力预测精度低、稳定性差等问题。【方法】提出了耦合模态分解、机器学习和群体智能的水电系统发电能力混合预测模型。首先,利用逐次变分模态分解法(SVMD)对原始出力序列进行分解降噪,提取出多尺度特征信号进... 【目的】针对传统水电发电能力预测精度低、稳定性差等问题。【方法】提出了耦合模态分解、机器学习和群体智能的水电系统发电能力混合预测模型。首先,利用逐次变分模态分解法(SVMD)对原始出力序列进行分解降噪,提取出多尺度特征信号进行分类建模;随后,采用最小二乘孪生极限学习机(LSTELM)对各分解信号进行预测建模,同时运用改进灰狼优化算法(IGWO)对模型参数进行优化,以提升模型的预测性能;最后对各子序列预测结果进行集成,叠加得到最终的预测结果。【结果】结果显示:所提方法在三个水电站中的预测结果精准可靠。在池潭水电站中,预见期为1 d时,所提模型在直接策略和多输入多输出策略中预测结果的纳什系数(NSE)指标较极限学习机模型分别提高了12.88%和12.11%。预见期由1 d增长至8 d时,传统方法预测结果的NSE指标由0.8840和0.8885逐渐降低到0.5735和0.5671,而本文所提两种策略预测结果分别由0.9979和0.9961逐渐降低到0.9423和0.9286。【结论】结果表明:所提模型在复杂水电系统发电能力预测中具有较强的稳定性和泛化能力,SVMD有效降低了发电能力序列的噪声影响,最小二乘法和孪生结构提升了LSTELM模型的泛化能力,SVMD-IGWO-LSTELM模型在水文特性稳定的水电站预测精度更高,在水文特性复杂的水电站预测能力略有下降但依旧保持高精度,为变化环境下水电系统发电能力预测提供有效方法。 展开更多
关键词 逐次变分模态分解法 发电出力 最小二乘孪生极限学习机 改进灰狼优化算法 影响因素
在线阅读 下载PDF
时移多尺度相位熵在螺栓联接结构松动检测中的应用
13
作者 李伟 周传彪 韩振华 《机电工程》 北大核心 2025年第9期1724-1733,共10页
风力发电机组的螺栓在其应用过程中易发生松动,会造成机组结构强度降低和振动加剧。针对螺栓松动检测策略普遍存在效率不佳、松动状态表征精度不高的问题,提出了一种结合时移多尺度相位熵(TSMPhE)和鲸鱼优化算法(WOA)优化混合核极限学习... 风力发电机组的螺栓在其应用过程中易发生松动,会造成机组结构强度降低和振动加剧。针对螺栓松动检测策略普遍存在效率不佳、松动状态表征精度不高的问题,提出了一种结合时移多尺度相位熵(TSMPhE)和鲸鱼优化算法(WOA)优化混合核极限学习机(HKELM)的风力发电机组螺栓松动检测策略。首先,对螺栓结构不同松紧程度的振动信号进行了TSMPhE分析,提取了信号中嵌入的反映螺栓松紧程度的特征信息,构造了特征样本;然后,利用WOA对HKELM的参数进行了优化,获得了核参数以及核函数权重最优的HKELM分类器模型;最后,将TSMPhE特征输入至WOA-HKELM中进行了松动检测,以判断螺栓组是否需要进行紧固;采用风力发电机组不同工况下的健康、轻度松动、重度松动和完全松动螺栓振动信号对该方法进行了实验分析,并将其与其他的检测策略进行了对比。研究结果表明:该策略能有效判断不同工况下螺栓的松紧程度,最低检测精度达到了94.38%以上,而平均检测精度也达到了96.56%以上;相较其他检测策略,TSMPhE有更高的检测准确率和更小的准确率波动,准确率至少提高了2.72%,准确率波动减小了0.44。该策略可为螺栓松动的精确和快速检测提供可行的思路。 展开更多
关键词 海上风力发电机组 螺栓联接 松动状态表征精度 时移多尺度相位熵 混合核极限学习机 鲸鱼优化算法
在线阅读 下载PDF
二元混合气体成分检测的改进蒲公英算法研究
14
作者 李鹏 汤炼海 +2 位作者 林事力 纵彪 于涛 《传感器与微系统》 北大核心 2025年第2期15-20,共6页
针对阵列传感器检测二元混合气体时由于交叉敏感特性导致准确率低的问题,提出一种改进型蒲公英优化(IDO)算法优化核极限学习机(KELM)的二元混合气体检测方法。首先,引入Kent映射初始化种群提高初始种群分布的均匀性,后将精英反向学习策... 针对阵列传感器检测二元混合气体时由于交叉敏感特性导致准确率低的问题,提出一种改进型蒲公英优化(IDO)算法优化核极限学习机(KELM)的二元混合气体检测方法。首先,引入Kent映射初始化种群提高初始种群分布的均匀性,后将精英反向学习策略(EOBL)引入蒲公英种子位置更新,提高原算法寻优精度。将该算法用于KELM参数寻优,建立改进DO(IDO)算法优化KELM模型,实现对二元混合气体的成分识别。实验结果表明:IDO算法优化的KELM模型对二元混合气体成分识别准确率可达99.71%,比原始KELM模型提高4.28%。 展开更多
关键词 改进蒲公英优化算法 核极限学习机 气体分类
在线阅读 下载PDF
基于相似日聚类组合模型的短期光伏发电功率预测
15
作者 郑晓亮 王虎 《科学技术与工程》 北大核心 2025年第27期11632-11641,共10页
为提高光伏发电功率的预测精度,减少光伏发电对电网调度的影响,提出一种基于相似日聚类的PCC-EEMD-BES-ELM光伏发电功率短期预测模型。通过Pearson相关系数(Pearson correlation coefficient,PCC)筛选出主要因素作为预测模型的输入,集... 为提高光伏发电功率的预测精度,减少光伏发电对电网调度的影响,提出一种基于相似日聚类的PCC-EEMD-BES-ELM光伏发电功率短期预测模型。通过Pearson相关系数(Pearson correlation coefficient,PCC)筛选出主要因素作为预测模型的输入,集成经验模态分解(ensemble empirical mode decomposition,EEMD)能够提取出光伏发电功率的多层次特征,秃鹰搜索算法(bald eagle search,BES)能有效选择出重要特征并进行模型优化,而优化极限学习机(extreme learning machine,ELM)则通过快速的学习机制进行高效的预测,从而形成一个能够在复杂环境下提供高精度预测的强大模型。最后利用相似日聚类将天气分成晴天、雨天、多云分别进行发电功率预测。以实际的光伏电站数据对模型进行验证,结果表明该模型最小的根均方差(root mean square error,RMSE)达到0.0481,平均绝对误差(mean absolute error,MAE)达到0.0359,平均相对百分误差(mean absolute percentage error,MAPE)达到0.947%。可见在不同季节不同天气下,该模型均表现出最低的预测误差,证明其在光伏发电功率短期预测中的有效性和稳定性。 展开更多
关键词 光伏发电 功率预测 秃鹰搜索优化算法 极限学习机
在线阅读 下载PDF
基于RPCA-GELM数据驱动的保护测量回路误差评估
16
作者 李振兴 龚世玉 《电力系统保护与控制》 北大核心 2025年第8期24-33,共10页
保护测量回路是电力系统继电保护的基石,其误差评估对电网安稳运维举足轻重。针对保护测量回路静态隐藏误差可能诱发保护误动/拒动的风险且难以在线监测问题,提出了一种基于递推主元分析和改进灰狼算法优化极限学习机(recursive princip... 保护测量回路是电力系统继电保护的基石,其误差评估对电网安稳运维举足轻重。针对保护测量回路静态隐藏误差可能诱发保护误动/拒动的风险且难以在线监测问题,提出了一种基于递推主元分析和改进灰狼算法优化极限学习机(recursive principal component analysis and extreme learning machine optimized by grey wolf optimization,RPCA-GELM)数据驱动的保护测量回路误差评估方法。首先基于电力系统正常运行下历史数据与实时数据,应用RPCA技术在线更新主元特征模型以缩短评估时间,进一步引入4种统计算法生成4类误差监测特征量,构建误差综合评判方法进行特征优选,提升误差评估准确率。然后针对模型评估精度取决于关键参数C、σ,引入国际无限折叠混沌映射策略对灰狼算法进行优化,以提升参数寻优精度和收敛速度,在此基础上结合ELM算法提出了基于GELM的保护测量回路误差评估方法。最后通过多组对比实验验证了所提方法能实现模型性能优化,且相对其他方法有效提升了保护测量回路误差评估准确率与精度。 展开更多
关键词 保护测量回路 误差评估 递推主元分析 灰狼算法 极限学习机
在线阅读 下载PDF
极薄煤层破碎顶板条件下液压支架带压移架残余支撑力决策方法
17
作者 张传伟 张刚强 +4 位作者 路正雄 李林岳 何正伟 龚凌霄 黄骏峰 《工矿自动化》 北大核心 2025年第3期22-31,38,共11页
在破碎顶板条件下,液压支架带压移架过程中残余支撑力的精准决策对于提高极薄煤层智能化开采效率和保障作业安全至关重要。为实现极薄煤层破碎顶板条件下液压支架带压移架残余支撑力的准确决策,提出了一种基于改进蜣螂算法(IDBO)优化深... 在破碎顶板条件下,液压支架带压移架过程中残余支撑力的精准决策对于提高极薄煤层智能化开采效率和保障作业安全至关重要。为实现极薄煤层破碎顶板条件下液压支架带压移架残余支撑力的准确决策,提出了一种基于改进蜣螂算法(IDBO)优化深度混合核极限学习机(DHKELM)的液压支架带压移架残余支撑力决策方法。在混合核极限学习机(HKELM)基础上引入极限学习机自动编码器(ELM-AE)结构来构建DHKELM模型,以增强对复杂输入的特征提取和非线性映射能力;引入ICMIC混沌映射、Lévy飞行和贪婪策略对蜣螂算法(DBO)进行改进,形成具备更高寻优精度和更快收敛速度的IDBO算法;利用IDBO算法优化DHKELM模型的超参数,建立IDBO-DHKELM模型。结合极薄煤层综采工作面液压支架带压移架实测数据,通过可视化和相关性分析,确定支架号、带压移架前支架支撑力、推移油缸进液压力和推移油缸行程变化速度作为影响残余支撑力的关键特征,并构建残余支撑力决策样本数据集,最终完成IDBO-DHKELM模型的训练与评估。实验结果表明:基于IDBO-DHKELM模型的液压支架带压移架残余支撑力决策结果的均方根误差(RMSE)、平均绝对误差(MAE)及决定系数(R^(2))分别为0.143,0.119,0.971,具有较高的决策精确度。 展开更多
关键词 极薄煤层 液压支架 带压移架 残余支撑力 改进蜣螂算法 深度混合核极限学习机
在线阅读 下载PDF
基于CEEMD的分特征组合超短期负荷预测模型
18
作者 商立群 贾丹铭 +1 位作者 安迪 王俊昆 《广西师范大学学报(自然科学版)》 北大核心 2025年第5期41-51,共11页
电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始... 电力负荷预测对电力调度和系统安全至关重要。针对超短期负荷预测,本文提出一种结合补充集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)与机器学习、智能优化算法的组合预测模型。首先通过CEEMD对原始数据进行分解,再利用排列熵(permutation entropy,PE)阈值进行分量分流。高频信号采用双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)预测,低频信号则通过混合核极限学习机(hybrid kernel extreme learning machine,HKELM)并结合雪消融优化算法(snow ablation optimizer,SAO)进行优化预测。最终,各分量预测结果叠加得到综合预测值。通过实例分析,模型的均方根误差、平均绝对误差和平均绝对百分比误差分别为61.61 kW、43.91 kW和0.38%,显著优于传统模型。实验结果表明,该模型充分发掘数据内在特征、结合各方法预测优势,在超短期负荷预测中具有较高的精度。 展开更多
关键词 短期电力负荷预测 CEEMD 排列熵 双向长短期记忆网络 极限学习机 智能优化算法
在线阅读 下载PDF
基于集成型极限学习机的氢燃料电池寿命预测 被引量:6
19
作者 杨淇 陈景文 +4 位作者 华志广 李祥隆 赵冬冬 兰天一 窦满峰 《电工技术学报》 北大核心 2025年第3期964-974,共11页
基于数据驱动的寿命预测方法能精准预测质子交换膜燃料电池(PEMFC)的剩余使用寿命,提高预测性能是当前寿命预测领域的研究热点。针对PEMFC寿命预测过程中预测精度与鲁棒性的提升问题,基于统计学原理的寿命预测方法,提出一种集成极限学习... 基于数据驱动的寿命预测方法能精准预测质子交换膜燃料电池(PEMFC)的剩余使用寿命,提高预测性能是当前寿命预测领域的研究热点。针对PEMFC寿命预测过程中预测精度与鲁棒性的提升问题,基于统计学原理的寿命预测方法,提出一种集成极限学习机(EELM)结构,对PEMFC的寿命进行长期预测。集成结构中包含了50次重复测试,通过局部强化优化器算法对每次测试结果进行优化,提升了寿命预测精度。在长期预测的结果中,给出了EELM预测结果的平均值和95%置信区间,提升了系统的鲁棒性。最后采用稳态电流、准动态电流条件和动态电流下的老化数据集验证了所提方法的有效性与可行性。 展开更多
关键词 质子交换膜燃料电池 极限学习机 集成结构 局部强化优化器
在线阅读 下载PDF
改进Sine混沌映射CO-ELM锂离子电池RUL预测 被引量:1
20
作者 王鹏 周俊 +1 位作者 伍星 刘韬 《储能科学与技术》 北大核心 2025年第4期1603-1616,共14页
针对锂离子电池采用极限学习机进行剩余使用寿命预测时,存在预测结果不稳定和预测准确度不高的问题,提出采用猎豹优化算法优化ELM对锂离子电池剩余使用寿命进行预测。提取锂离子电池数据集中等压降放电时间作为间接健康因子;引入猎豹优... 针对锂离子电池采用极限学习机进行剩余使用寿命预测时,存在预测结果不稳定和预测准确度不高的问题,提出采用猎豹优化算法优化ELM对锂离子电池剩余使用寿命进行预测。提取锂离子电池数据集中等压降放电时间作为间接健康因子;引入猎豹优化算法对ELM模型参数进行优化,并使用改进的Sine混沌映射优化猎豹初始种群;最后采用NASA卓越预测中心提供的电池数据集和牛津大学提供的电池老化数据集对该模型有效性和准确性进行验证。通过原始ELM模型进行多次实验,得到该数据集进行预测的最佳训练数据量以及最佳神经元数量;利用所提出的SCO-ELM模型进行电池的剩余使用寿命预测,对比原始ELM与遗传算法优化ELM模型,均方根误差在0.004以下,且具有较快的预测时间;之后进行电池全周期寿命预测,预测精度平均提升40%,预测速度提升78%以上;使用B0005号电池训练结果对同类型电池组进行预测,预测精度平均提升25%,预测速度提升75%以上。实验结果表明,所提方法具有预测准确度高、预测速度快、操作复杂度低和模型稳定等优势。 展开更多
关键词 锂离子电池 剩余使用寿命 极限学习机 猎豹优化 混沌映射
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部