期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A novel hybrid estimation of distribution algorithm for solving hybrid flowshop scheduling problem with unrelated parallel machine 被引量:10
1
作者 孙泽文 顾幸生 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1779-1788,共10页
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor... The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms. 展开更多
关键词 hybrid estimation of distribution algorithm teaching learning based optimization strategy hybrid flow shop unrelated parallel machine scheduling
在线阅读 下载PDF
DOA estimation via sparse recovering from the smoothed covariance vector 被引量:1
2
作者 Jingjing Cai Dan Bao Peng Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期555-561,共7页
A direction of arrival(DOA) estimation algorithm is proposed using the concept of sparse representation. In particular, a new sparse signal representation model called the smoothed covariance vector(SCV) is establ... A direction of arrival(DOA) estimation algorithm is proposed using the concept of sparse representation. In particular, a new sparse signal representation model called the smoothed covariance vector(SCV) is established, which is constructed using the lower left diagonals of the covariance matrix. DOA estimation is then achieved from the SCV by sparse recovering, where two distinguished error limit estimation methods of the constrained optimization are proposed to make the algorithms more robust. The algorithm shows robust performance on DOA estimation in a uniform array, especially for coherent signals. Furthermore, it significantly reduces the computational load compared with those algorithms based on multiple measurement vectors(MMVs). Simulation results validate the effectiveness and efficiency of the proposed algorithm. 展开更多
关键词 array signal processing convex optimization direction of arrival(DOA) estimation sparse representation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部