A multifunctional surface plasmon polariton disk device coupled by two metal-insulator-metal(MIM) waveguides is proposed and investigated numerically with finite-difference time-domain simulation. It can be used as ...A multifunctional surface plasmon polariton disk device coupled by two metal-insulator-metal(MIM) waveguides is proposed and investigated numerically with finite-difference time-domain simulation. It can be used as optical switch and temperature sensor by filling disk with liquid crystal and ethanol, respectively. The simulation results demonstrate that the transmission characteristics of an optical switch can be manipulated by adjusting the radius of disk and the slit width between disk and MIM waveguides. The transmittance and modulation depth of optical switch at 1550 nm are up to 64.82% and 17.70 d B, respectively. As a temperature sensor, its figure of merit can reach 30.46. In this paper, an optical switch with better efficiency and a temperature sensor with better sensitivity can be achieved.展开更多
We experimentally demonstrate a small-size and high-speed silicon optical switch based on the free carrier plasma dispersion in silicon. Using an embedded racetrack resonator with a quality factor of 7400, the optical...We experimentally demonstrate a small-size and high-speed silicon optical switch based on the free carrier plasma dispersion in silicon. Using an embedded racetrack resonator with a quality factor of 7400, the optical switch shows an extinction ratio exceeding 13 dB with a footprint of only 2.2 × 10-3 mm^2. Moreover, a novel pre-emphasis technique is introduced to improve the optical response performance and the rise and the fall times are reduced down to 0.24 ns and 0.42 ns respectively, which are 25% and 44% lower than those without the pre-emphasis.展开更多
Optical nanofiber(ONF)is a special tool to achieve the interaction between light and matter with ultralow power.In this paper,we demonstrate V-type electromagnetically induced transparency(EIT)in cold atoms trapped by...Optical nanofiber(ONF)is a special tool to achieve the interaction between light and matter with ultralow power.In this paper,we demonstrate V-type electromagnetically induced transparency(EIT)in cold atoms trapped by an ONFbased two-color optical lattice.At an optical depth of 7.35,90%transmission can be achieved by only 7.7 pW coupling power.The EIT peak and linewidth are investigated as a function of the coupling optical power.By modulating the pWlevel control beam of the ONF-EIT system in sequence,we further achieve efficient and high contrast control of the probe transmission,as well as its potential application in the field of quantum communication and quantum information science by using one-dimensional atomic chains.展开更多
Application of the pressure controlled isothermal heating vertical deposition method to the fabrication of colloidal photonic crystals is systematically investigated in this paper. The fabricated samples are character...Application of the pressure controlled isothermal heating vertical deposition method to the fabrication of colloidal photonic crystals is systematically investigated in this paper. The fabricated samples are characterized by scanning electron microscope and transmission spectrum. High-quality samples with large transmissions in the pass bands and the sharp band edges are obtained and the optimum growth condition is determined. For the best sample, the transmission in the pass bands approaches 0.9 while that in the band gap reaches 0.1. More importantly, the maximum differential transmission as high as 0.1/nm is achieved. In addition, it is found that the number of stacking layers does not increase linearly with concentration of PS spheres in a solution, and a gradual saturation occurs when the concentration of PS spheres exceeds 1.5 wt.%. The uniformity of the fabricated samples is examined by transmission measurements on areas with different sizes. Finally, the tolerance of the fabricated samples to baking was studied.展开更多
This paper demonstrates the realization of an optical switch by optically manipulating a large number of polystyrene spheres contained in a capillary. The strong scattering force exerted on polystyrene spheres with a ...This paper demonstrates the realization of an optical switch by optically manipulating a large number of polystyrene spheres contained in a capillary. The strong scattering force exerted on polystyrene spheres with a large diameter of 4.3 μm is employed to realize the switching operation. A transparent window is opened for the signal light when the polystyrene spheres originally located at the beam centre are driven out of the beam region by the strong scattering force induced by the control light. The switching dynamics under different incident powers is investigated and compared with that observed in the optical switch based on the formation of optical matter. It is found that a large extinction ratio of - 30 dB and fast switching-on and switching-off times can be achieved in this type of switch.展开更多
To promote the future quantum information technologies, we demonstrate an electrically driven optical switch based on quantum interference in a hybrid opto-electromechanical system, which consists of an opto-mechanica...To promote the future quantum information technologies, we demonstrate an electrically driven optical switch based on quantum interference in a hybrid opto-electromechanical system, which consists of an opto-mechanical cavity and an external electric circuit. The key element of our scheme is a moveable mirror of cavity as a charged mechanical oscillator capacitively coupled to a fixed charged plate in a variable capacitor. By adjusting the voltage of the capacitor, the displacement of the moveable mirror is modulated, then the cavity field can be electrically turned on or off due to the detuning of the cavity. Based on the cavity induced transparency, the transparency window can be electrically switched on or off by turning on or off the cavity field. Therefore, the susceptibility of the medium in the cavity can be electrically controlled, i.e., the scheme of the electrically controlled absorption switching can be demonstrated. This electrically driven optical switch will excite a development trend and implementation prospect towards the integration and miniaturization of quantum module device in a chip.展开更多
We consider differentiated timecritical task scheduling in a N×N input queued optical packet s w itch to ens ure 100% throughput and meet different delay requirements among various modules of data center. Existin...We consider differentiated timecritical task scheduling in a N×N input queued optical packet s w itch to ens ure 100% throughput and meet different delay requirements among various modules of data center. Existing schemes either consider slot-by-slot scheduling with queue depth serving as the delay metric or assume that each input-output connection has the same delay bound in the batch scheduling mode. The former scheme neglects the effect of reconfiguration overhead, which may result in crippled system performance, while the latter cannot satisfy users' differentiated Quality of Service(Qo S) requirements. To make up these deficiencies, we propose a new batch scheduling scheme to meet the various portto-port delay requirements in a best-effort manner. Moreover, a speedup is considered to compensate for both the reconfiguration overhead and the unavoidable slots wastage in the switch fabric. With traffic matrix and delay constraint matrix given, this paper proposes two heuristic algorithms Stringent Delay First(SDF) and m-order SDF(m-SDF) to realize the 100% packet switching, while maximizing the delay constraints satisfaction ratio. The performance of our scheme is verified by extensive numerical simulations.展开更多
Hybrid optical switching networks make full use of the advantages of Optical Circuit Switching(OCS)and Optical Burst Switching(OBS).In parallel hybrid optical switching networks,edge nodes choose a switching mode for ...Hybrid optical switching networks make full use of the advantages of Optical Circuit Switching(OCS)and Optical Burst Switching(OBS).In parallel hybrid optical switching networks,edge nodes choose a switching mode for traffic and no longer change.The inflexible decision making of the traffic transfer mode leads to low resource utilization when the arrival rate of the OCS traffic is lower than the capacity of the light path.In this paper,a new transmission scheme is proposed to improve resource utilization for hybrid optical switching networks.When the traffic arrival rate of the light path is lower than the transmission rate of the light path,the OCS traffic flow is reshaped at the edge nodes to generate a series of voids.Then,several message packets are sent along the light path to inform the core nodes of the voids of the light paths that represent the unused bandwidth resources.To improve the resource utilization,the voids can be filled with data bursts by core nodes.The simulation results show that the new scheme can effectively reduce the burst loss rate and improve the link utilization of the hybrid optical switching network on the premise of a providing service quality guarantee for OCS traffic.展开更多
The transmission characteristics of the optical label switching system based on the FSK/ASK orthogonal modulation format is investigated. The factors that affect the transmission performance, such as the FSK tone spac...The transmission characteristics of the optical label switching system based on the FSK/ASK orthogonal modulation format is investigated. The factors that affect the transmission performance, such as the FSK tone space, dispersion compensation and coupler split ratio, are studied by numerical simulation. The proposed scheme is also experimentally demonstrated with a transmission of 155 Mbit/s FSK label combined with 10 Gbit/s ASK payload.展开更多
We investigate the nonlinear dynamics of a system composed of a cigar-shaped Bose-Einstein condensate and an optical cavity with the two sides coupled dispersively.By adopting discrete-mode approximation for the conde...We investigate the nonlinear dynamics of a system composed of a cigar-shaped Bose-Einstein condensate and an optical cavity with the two sides coupled dispersively.By adopting discrete-mode approximation for the condensate,taking atom loss as a necessary part of the model to analyze the evolution of the system,while using trial and error method to find out steady states of the system as a reference,numerical simulation demonstrates that with a constant pump,atom loss will trigger a quantum optical bi-stability switch,which predicts a new interesting phenomenon for experiments to verify.展开更多
Based on a media access and control(MAC)protocol,an arrangement of channels and transceivers in optical packet switching dense wavelength division multiplexing(DWDM)networks is proposed in this paper.In order to r...Based on a media access and control(MAC)protocol,an arrangement of channels and transceivers in optical packet switching dense wavelength division multiplexing(DWDM)networks is proposed in this paper.In order to reduce the cost of nodes,fixed transmitters and receivers are used instead of tunable transmitters and receivers.Two fixed transmitters and many fixed receivers are used in each node in the scheme.The average waiting delay of this scheme is analyzed through mathematics and computer simulation.The result shows that the property of the scheme is almost the same as using tunable transmitter and receiver.Furthermore,if the tuning time of tunable transmitters is taken into account,the performance of the tunable transmitter scheme is poor than this scheme at the average waiting delay and throughput of the network.展开更多
Optical switch fabric plays an important role in building multiple-user optical quantum communication networks.Owing to its self-routing property and low complexity, a banyan network is widely used for building switch...Optical switch fabric plays an important role in building multiple-user optical quantum communication networks.Owing to its self-routing property and low complexity, a banyan network is widely used for building switch fabric. While,there is no efficient way to remove internal blocking in a banyan network in a classical way, quantum state fusion, by which the two-dimensional internal quantum states of two photons could be combined into a four-dimensional internal state of a single photon, makes it possible to solve this problem. In this paper, we convert the output mode of quantum state fusion from spatial-polarization mode into time-polarization mode. By combining modified quantum state fusion and quantum state fission with quantum Fredkin gate, we propose a practical scheme to build an optical quantum switch unit which is block free. The scheme can be extended to building more complex units, four of which are shown in this paper.展开更多
In the internet protocol(IP) over multi-granular optical switch network (IP/MG-OXC), the network node is a typical multilayer switch comprising several layers, the IP packet switching (PXC) layer, wavelength swi...In the internet protocol(IP) over multi-granular optical switch network (IP/MG-OXC), the network node is a typical multilayer switch comprising several layers, the IP packet switching (PXC) layer, wavelength switching (WXC) layer and fiber switching (FXC) layer. This network is capable of both IP layer grooming and wavelength grooming in a hierarchical manner. Resource provisioning in the multi-granular network paradigm is called hierarchical grooming problem. An integer linear programming (ILP) model is proposed to formulate the problem. An iterative heuristic approach is developed for solving the problem in large networks. Case study shows that IP/MG-OXC network is much more extendible and can significantly save the overall network cost as compared with IP over wavelength division multiplexing network.展开更多
Optical Time Division Multiplexing (OTDM) is known to be capable of transmitting single channel high bit rate data stream with low speed electro-optical components. A cost-effective, compact and stable short time wi...Optical Time Division Multiplexing (OTDM) is known to be capable of transmitting single channel high bit rate data stream with low speed electro-optical components. A cost-effective, compact and stable short time window with low insert loss, low phase noise, low timing-jitter and high speed performance is essential for ultra-high speed OTDM systems using phase and amplitude modulation formats. In this paper, we review three promising methods to obtain 40 GHz short time window including Electro-Absorption Modulator (EAM), Dual-Parallel Mach-Zehnder Modulator (DPMZM) and Fiber Loop-Polarization Modulator (FL-PolM). Sub-picosecond short pulse source generation, optical time division denlaltiplexing and clock recovery are realized respectively by using the short time window based on the three methods. By using DPMZM based pulse source and EAM based Clock Recovery (CR) and dermltiplexer, error free transmission of 640 Goit/s (160 Gbaud/s Pol-Mux DQPSK) single channel signal over 400 km single mode fiber is proven to be experimentally successful.展开更多
This paper introduces the mid-span spectral inversion by four-wave mixing in a commercially available semiconductor optical amplifier (SOA) with a length of about 1.5 mm to optical label switching network based on c...This paper introduces the mid-span spectral inversion by four-wave mixing in a commercially available semiconductor optical amplifier (SOA) with a length of about 1.5 mm to optical label switching network based on combined frequency shift keying (FSK)-intensiy modulation (IM)/optical label-packet modulation to overcome the dispersion limitation of fiber. The 155 Mb/s-10 Gb/s combined FSK/IM signal is experimentally transmitted over a 100 km standard single mode fiber. 10^-10 and 10^-9 BER (bit error ratio), or even better, is achieved for the FSK label and IM packet, respectively. The -19 dB power conversion efficiency is obtained for -1 nm wavelength detuning.展开更多
The first path-independent insertion-loss(PILOSS) strictly non-blocking 4×4 silicon electro–optic switch matrix is reported. The footprint of this switch matrix is only 4.6 mm×1.0 mm. Using single-arm mod...The first path-independent insertion-loss(PILOSS) strictly non-blocking 4×4 silicon electro–optic switch matrix is reported. The footprint of this switch matrix is only 4.6 mm×1.0 mm. Using single-arm modulation, the crosstalk measured in this test is-13 dB --27 dB. And a maximum crosstalk deterioration of 6d B caused by two-path interference is also found.展开更多
Optical buffers are critical for optical signal processing in future optical packet-switched networks. In this paper, a theoretical study as well as an experimental demonstration on a new optical buffer with large dyn...Optical buffers are critical for optical signal processing in future optical packet-switched networks. In this paper, a theoretical study as well as an experimental demonstration on a new optical buffer with large dynamical delay time is carried out based on cascaded double loop optical buffers (I:)LOBs). It is found that pulse distortion can be restrained by a negative optical control mode when the optical packet is in the loop. Noise analysis indicates that it is feasible to realise a large variable delay range by cascaded DLOBs. These conclusions are validated by the experiment system with 4-stage cascaded DLOBs. Both the theoretical simulations and the experimental results indicate that a large delay range of 1-9999 times the basic delay unit and a fine granularity of 25 ns can be achieved by the cascaded DLOBs. The performance of the cascaded DLOBs is suitable for the all optical networks.展开更多
The emerging new concepts and technologies based on microwave photonics have led to an ever-increasing interest in developing innovative radar systems with a net gain in functionality,bandwidth /resolution,size,mass,c...The emerging new concepts and technologies based on microwave photonics have led to an ever-increasing interest in developing innovative radar systems with a net gain in functionality,bandwidth /resolution,size,mass,complexity and cost when compared with the traditional implementations. This paper describes the techniques developed in the last few years in microwave photonics that might revolutionize the way to design multifunction radar systems,with an emphasis on the recent advances in optoelectronic oscillators( OEOs),arbitrary waveform generation,photonic mixing,phase coding,filtering,beamforming,analog-to-digital conversion,and stable radio-frequency signal transfer. Challenges in implementation of these components and subsystems for meeting the technique requirements of the multifunction radar applications are discussed.展开更多
The field of silicon nanophotonics has attracted considerable attention in the past decade because of its unique advantages,including complementary metal–oxide–semiconductor(CMOS) compatibility and the ability to ...The field of silicon nanophotonics has attracted considerable attention in the past decade because of its unique advantages,including complementary metal–oxide–semiconductor(CMOS) compatibility and the ability to achieve an ultra-high integration density. In particular, silicon nanophotonic integrated devices for on-chip light manipulation have been developed successfully and have played very import roles in various applications. In this paper, we review the recent progress of silicon nanophotonic devices for on-chip light manipulation, including the static type and the dynamic type. Static onchip light manipulation focuses on polarization/mode manipulation, as well as light nanofocusing, while dynamic on-chip light manipulation focuses on optical modulation/switching. The challenges and prospects of high-performance silicon nanophotonic integrated devices for on-chip light manipulation are discussed.展开更多
Based on Dirac semimetal metamaterials,the tunable plasmon induced transparency(PIT)is investigated elaborately in this work.The designed unit cell consists of a strip and a square bracket,which is periodically aligne...Based on Dirac semimetal metamaterials,the tunable plasmon induced transparency(PIT)is investigated elaborately in this work.The designed unit cell consists of a strip and a square bracket,which is periodically aligned on the dielectric substrate.Our numerical results illustrate that a pronounced transparency window exists due to near field coupling between two bright modes,which can be dynamically tuned with Fermi energy.Namely,the transparency window demonstrates a distinct blue shift with a larger Fermi energy.Moreover,an on-to-off switch of the PIT transparency window is realized with different polarization angles.In addition,the accompanied slow light property is examined with the calculation of phase and group delay.Finally,a small variation of the refractive index of the substrate can induce a clear movement of the PIT transparency window which delivers a guidance in the application of optical sensing.Thus,this work provides us a new strategy to design compact and adjustable PIT devices and has potential applications in highly tunable optical switchers,sensors,and slow light devices.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61275059 and 61307062)
文摘A multifunctional surface plasmon polariton disk device coupled by two metal-insulator-metal(MIM) waveguides is proposed and investigated numerically with finite-difference time-domain simulation. It can be used as optical switch and temperature sensor by filling disk with liquid crystal and ethanol, respectively. The simulation results demonstrate that the transmission characteristics of an optical switch can be manipulated by adjusting the radius of disk and the slit width between disk and MIM waveguides. The transmittance and modulation depth of optical switch at 1550 nm are up to 64.82% and 17.70 d B, respectively. As a temperature sensor, its figure of merit can reach 30.46. In this paper, an optical switch with better efficiency and a temperature sensor with better sensitivity can be achieved.
基金Project supported by the National Natural Science Foundation of China(Grant No.60877036)the National Basic Research Program of China(Grant No.2006CB302803)+1 种基金the State Key Laboratory of Advanced Optical Communication Systems and Networks,China(Grant No.2008SH02)the Knowledge Innovation Program of Institute of Semiconductors,Chinese Academy of Sciences(Grant No.ISCAS2008T10)
文摘We experimentally demonstrate a small-size and high-speed silicon optical switch based on the free carrier plasma dispersion in silicon. Using an embedded racetrack resonator with a quality factor of 7400, the optical switch shows an extinction ratio exceeding 13 dB with a footprint of only 2.2 × 10-3 mm^2. Moreover, a novel pre-emphasis technique is introduced to improve the optical response performance and the rise and the fall times are reduced down to 0.24 ns and 0.42 ns respectively, which are 25% and 44% lower than those without the pre-emphasis.
基金supported by State Grid science and Technology Project(Grant No.5700-202127198A-0-0-00)。
文摘Optical nanofiber(ONF)is a special tool to achieve the interaction between light and matter with ultralow power.In this paper,we demonstrate V-type electromagnetically induced transparency(EIT)in cold atoms trapped by an ONFbased two-color optical lattice.At an optical depth of 7.35,90%transmission can be achieved by only 7.7 pW coupling power.The EIT peak and linewidth are investigated as a function of the coupling optical power.By modulating the pWlevel control beam of the ONF-EIT system in sequence,we further achieve efficient and high contrast control of the probe transmission,as well as its potential application in the field of quantum communication and quantum information science by using one-dimensional atomic chains.
基金Project supported by the National Natural Science Foundation of China (Grant No 10674051)the Natural Science Foundation of Guangdong province, China (Grant No 06025082)+1 种基金the Program for Innovative Research Team of the Higher Education in Guangdong (Grant No 06CXTD005)the Program for New Century Excellent Talents (NCET) in University of China (Grant No ncet-04-0829)
文摘Application of the pressure controlled isothermal heating vertical deposition method to the fabrication of colloidal photonic crystals is systematically investigated in this paper. The fabricated samples are characterized by scanning electron microscope and transmission spectrum. High-quality samples with large transmissions in the pass bands and the sharp band edges are obtained and the optimum growth condition is determined. For the best sample, the transmission in the pass bands approaches 0.9 while that in the band gap reaches 0.1. More importantly, the maximum differential transmission as high as 0.1/nm is achieved. In addition, it is found that the number of stacking layers does not increase linearly with concentration of PS spheres in a solution, and a gradual saturation occurs when the concentration of PS spheres exceeds 1.5 wt.%. The uniformity of the fabricated samples is examined by transmission measurements on areas with different sizes. Finally, the tolerance of the fabricated samples to baking was studied.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10974060 and 10774050 )the Program for Innovative Research Team of the Higher Education of Guangdong Province of China (Grant No. 06CXTD005)
文摘This paper demonstrates the realization of an optical switch by optically manipulating a large number of polystyrene spheres contained in a capillary. The strong scattering force exerted on polystyrene spheres with a large diameter of 4.3 μm is employed to realize the switching operation. A transparent window is opened for the signal light when the polystyrene spheres originally located at the beam centre are driven out of the beam region by the strong scattering force induced by the control light. The switching dynamics under different incident powers is investigated and compared with that observed in the optical switch based on the formation of optical matter. It is found that a large extinction ratio of - 30 dB and fast switching-on and switching-off times can be achieved in this type of switch.
基金Project supported by the National Natural Sciences Foundation of China(Grant Nos.61605225,11547035,11505100,11575071,11604147,and91321101)the Natural Science Foundation of Shanghai(Grant No.16ZR1448400)+2 种基金the Natural Science Foundation of Shandong Province,China(Grant No.ZR2015AQ007)the Strategic Priority Research Program(Grant No.XDB01010200)the Hundred Talents Program of the Chinese Academy of Sciences(Grant No.Y321311401)
文摘To promote the future quantum information technologies, we demonstrate an electrically driven optical switch based on quantum interference in a hybrid opto-electromechanical system, which consists of an opto-mechanical cavity and an external electric circuit. The key element of our scheme is a moveable mirror of cavity as a charged mechanical oscillator capacitively coupled to a fixed charged plate in a variable capacitor. By adjusting the voltage of the capacitor, the displacement of the moveable mirror is modulated, then the cavity field can be electrically turned on or off due to the detuning of the cavity. Based on the cavity induced transparency, the transparency window can be electrically switched on or off by turning on or off the cavity field. Therefore, the susceptibility of the medium in the cavity can be electrically controlled, i.e., the scheme of the electrically controlled absorption switching can be demonstrated. This electrically driven optical switch will excite a development trend and implementation prospect towards the integration and miniaturization of quantum module device in a chip.
基金supported by the Major State Basic Research Program of China (973 project No. 2013CB329301 and 2010CB327806)the Natural Science Fund of China (NSFC project No. 61372085, 61032003, 61271165 and 61202379)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China (RFDP project No. 20120185110025, 20120185110030 and 20120032120041)supported by Tianjin Key Laboratory of Cognitive Computing and Application, School of Computer Science and Technology, Tianjin University, Tianjin, P. R. China
文摘We consider differentiated timecritical task scheduling in a N×N input queued optical packet s w itch to ens ure 100% throughput and meet different delay requirements among various modules of data center. Existing schemes either consider slot-by-slot scheduling with queue depth serving as the delay metric or assume that each input-output connection has the same delay bound in the batch scheduling mode. The former scheme neglects the effect of reconfiguration overhead, which may result in crippled system performance, while the latter cannot satisfy users' differentiated Quality of Service(Qo S) requirements. To make up these deficiencies, we propose a new batch scheduling scheme to meet the various portto-port delay requirements in a best-effort manner. Moreover, a speedup is considered to compensate for both the reconfiguration overhead and the unavoidable slots wastage in the switch fabric. With traffic matrix and delay constraint matrix given, this paper proposes two heuristic algorithms Stringent Delay First(SDF) and m-order SDF(m-SDF) to realize the 100% packet switching, while maximizing the delay constraints satisfaction ratio. The performance of our scheme is verified by extensive numerical simulations.
基金supported by the National Basic Research Program of China(973 Program)under Grant No.2012CB315800the National Natural Science Foundation of China under Grants No.61275077,No.61071117,No.61171158,No.61102131+1 种基金the Natural Science Foundation Project of CQ,CSTC under GrantsNo.2009BB2285,No.2008BB2414,No.2010BB2413,No.2010BB2409,No.2010BB2413the Projects of the Education Council of Chongqing under Grants No.KJ080513,No.KJ080522,No.KJ110519,No.KJ110527
文摘Hybrid optical switching networks make full use of the advantages of Optical Circuit Switching(OCS)and Optical Burst Switching(OBS).In parallel hybrid optical switching networks,edge nodes choose a switching mode for traffic and no longer change.The inflexible decision making of the traffic transfer mode leads to low resource utilization when the arrival rate of the OCS traffic is lower than the capacity of the light path.In this paper,a new transmission scheme is proposed to improve resource utilization for hybrid optical switching networks.When the traffic arrival rate of the light path is lower than the transmission rate of the light path,the OCS traffic flow is reshaped at the edge nodes to generate a series of voids.Then,several message packets are sent along the light path to inform the core nodes of the voids of the light paths that represent the unused bandwidth resources.To improve the resource utilization,the voids can be filled with data bursts by core nodes.The simulation results show that the new scheme can effectively reduce the burst loss rate and improve the link utilization of the hybrid optical switching network on the premise of a providing service quality guarantee for OCS traffic.
基金supported by the National Natural Science Foundation of China(Grant No 60677004)the National High Technology Research and Development Program of China(Grant No 2007AA01Z260)+4 种基金The project is also supported by the Key Project of Chinese Ministry of Education(Grant No 107011)the Key Laboratory of Broadband Optical Fiber Transmission and Communication Networks(UESTC)(Ministry of Education of China)Teaching and Scientific Research Foundation for the Returned Overseas Chinese Scholars(State Education Ministry of China)the Corporative Building Project of Beijing Educational Committee(Grant No XK100130737)the Program for New Century Excellent Talents in University of China(Grant No NECT-07-0111)
文摘The transmission characteristics of the optical label switching system based on the FSK/ASK orthogonal modulation format is investigated. The factors that affect the transmission performance, such as the FSK tone space, dispersion compensation and coupler split ratio, are studied by numerical simulation. The proposed scheme is also experimentally demonstrated with a transmission of 155 Mbit/s FSK label combined with 10 Gbit/s ASK payload.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10934010 and 60978019)
文摘We investigate the nonlinear dynamics of a system composed of a cigar-shaped Bose-Einstein condensate and an optical cavity with the two sides coupled dispersively.By adopting discrete-mode approximation for the condensate,taking atom loss as a necessary part of the model to analyze the evolution of the system,while using trial and error method to find out steady states of the system as a reference,numerical simulation demonstrates that with a constant pump,atom loss will trigger a quantum optical bi-stability switch,which predicts a new interesting phenomenon for experiments to verify.
文摘Based on a media access and control(MAC)protocol,an arrangement of channels and transceivers in optical packet switching dense wavelength division multiplexing(DWDM)networks is proposed in this paper.In order to reduce the cost of nodes,fixed transmitters and receivers are used instead of tunable transmitters and receivers.Two fixed transmitters and many fixed receivers are used in each node in the scheme.The average waiting delay of this scheme is analyzed through mathematics and computer simulation.The result shows that the property of the scheme is almost the same as using tunable transmitter and receiver.Furthermore,if the tuning time of tunable transmitters is taken into account,the performance of the tunable transmitter scheme is poor than this scheme at the average waiting delay and throughput of the network.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61372076 and 61301171)the 111 Project(Grant No.B08038)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.K5051201021)the Scholarship from China Scholarship Council(Grant No.201308615037)
文摘Optical switch fabric plays an important role in building multiple-user optical quantum communication networks.Owing to its self-routing property and low complexity, a banyan network is widely used for building switch fabric. While,there is no efficient way to remove internal blocking in a banyan network in a classical way, quantum state fusion, by which the two-dimensional internal quantum states of two photons could be combined into a four-dimensional internal state of a single photon, makes it possible to solve this problem. In this paper, we convert the output mode of quantum state fusion from spatial-polarization mode into time-polarization mode. By combining modified quantum state fusion and quantum state fission with quantum Fredkin gate, we propose a practical scheme to build an optical quantum switch unit which is block free. The scheme can be extended to building more complex units, four of which are shown in this paper.
基金Sponsored by Agency for Singapore Technology and Advance Research(RGM01/16)
文摘In the internet protocol(IP) over multi-granular optical switch network (IP/MG-OXC), the network node is a typical multilayer switch comprising several layers, the IP packet switching (PXC) layer, wavelength switching (WXC) layer and fiber switching (FXC) layer. This network is capable of both IP layer grooming and wavelength grooming in a hierarchical manner. Resource provisioning in the multi-granular network paradigm is called hierarchical grooming problem. An integer linear programming (ILP) model is proposed to formulate the problem. An iterative heuristic approach is developed for solving the problem in large networks. Case study shows that IP/MG-OXC network is much more extendible and can significantly save the overall network cost as compared with IP over wavelength division multiplexing network.
基金Acknowledgements This paper was partially supported by the Hi-Tech Research andDevelopment Program of China under Grant No. 2012AA011303 the National Natural Science Foundation of China under Crants No. 61001121, No. 60932004, No. 61006041+1 种基金 the National Key Basic Research Program of China under Grant No. 2011CB301702 the Fundamental Research Funds for the Central Universities.
文摘Optical Time Division Multiplexing (OTDM) is known to be capable of transmitting single channel high bit rate data stream with low speed electro-optical components. A cost-effective, compact and stable short time window with low insert loss, low phase noise, low timing-jitter and high speed performance is essential for ultra-high speed OTDM systems using phase and amplitude modulation formats. In this paper, we review three promising methods to obtain 40 GHz short time window including Electro-Absorption Modulator (EAM), Dual-Parallel Mach-Zehnder Modulator (DPMZM) and Fiber Loop-Polarization Modulator (FL-PolM). Sub-picosecond short pulse source generation, optical time division denlaltiplexing and clock recovery are realized respectively by using the short time window based on the three methods. By using DPMZM based pulse source and EAM based Clock Recovery (CR) and dermltiplexer, error free transmission of 640 Goit/s (160 Gbaud/s Pol-Mux DQPSK) single channel signal over 400 km single mode fiber is proven to be experimentally successful.
基金supported by National Natural Science Foundation of China (Grant No 60677004)National High Technology 863 Research and Development Program of China (Grant Nos 2007AA01Z260,2007AA03Z447 and 2009AA01Z220)+4 种基金Key Project of the Chinese Ministry of Education (Grant No 107011)Key Laboratory of Broadband Optical Fiber Transmission and Communication Networks (UESTC) (Ministry of Education)Teaching and Scientific Research Foundation for the Returned Overseas Chinese Scholars (State Education Ministry)the Corporative Building Project of Beijing Educational Committee (Grant NoXK100130737)Program for New Century Excellent Talents in University of China (Grant No NECT-07-0111)
文摘This paper introduces the mid-span spectral inversion by four-wave mixing in a commercially available semiconductor optical amplifier (SOA) with a length of about 1.5 mm to optical label switching network based on combined frequency shift keying (FSK)-intensiy modulation (IM)/optical label-packet modulation to overcome the dispersion limitation of fiber. The 155 Mb/s-10 Gb/s combined FSK/IM signal is experimentally transmitted over a 100 km standard single mode fiber. 10^-10 and 10^-9 BER (bit error ratio), or even better, is achieved for the FSK label and IM packet, respectively. The -19 dB power conversion efficiency is obtained for -1 nm wavelength detuning.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB301701)the National High Technology Research and Development Program of China(Grant Nos.2013AA014402+2 种基金2012AA012202and 2015AA016904)the National Natural Science Foundation of China(Grant Nos.61275065 and 61107048)
文摘The first path-independent insertion-loss(PILOSS) strictly non-blocking 4×4 silicon electro–optic switch matrix is reported. The footprint of this switch matrix is only 4.6 mm×1.0 mm. Using single-arm modulation, the crosstalk measured in this test is-13 dB --27 dB. And a maximum crosstalk deterioration of 6d B caused by two-path interference is also found.
基金supported by the State Key Development Program for Basic Research of China (Grant No.2010CB328300)the National Natural Science Foundation of China (Grant Nos.60677004 and 60702049)+1 种基金the Program for the New Century Excellent Talents in University of China (Grant No.NECT-07-0111)the Innovation Plan for Youth of Beijing University of Posts and Telecommunications
文摘Optical buffers are critical for optical signal processing in future optical packet-switched networks. In this paper, a theoretical study as well as an experimental demonstration on a new optical buffer with large dynamical delay time is carried out based on cascaded double loop optical buffers (I:)LOBs). It is found that pulse distortion can be restrained by a negative optical control mode when the optical packet is in the loop. Noise analysis indicates that it is feasible to realise a large variable delay range by cascaded DLOBs. These conclusions are validated by the experiment system with 4-stage cascaded DLOBs. Both the theoretical simulations and the experimental results indicate that a large delay range of 1-9999 times the basic delay unit and a fine granularity of 25 ns can be achieved by the cascaded DLOBs. The performance of the cascaded DLOBs is suitable for the all optical networks.
基金Supported in part by the National Basic Research Program of China(2012CB315705)the Natural Science Foundation of Jiangsu Province(BK2012031,BK2012381)+1 种基金the National Natural Science Foundation of China(61201048,61107063)the Fundamental Research Funds for the Central Universities
文摘The emerging new concepts and technologies based on microwave photonics have led to an ever-increasing interest in developing innovative radar systems with a net gain in functionality,bandwidth /resolution,size,mass,complexity and cost when compared with the traditional implementations. This paper describes the techniques developed in the last few years in microwave photonics that might revolutionize the way to design multifunction radar systems,with an emphasis on the recent advances in optoelectronic oscillators( OEOs),arbitrary waveform generation,photonic mixing,phase coding,filtering,beamforming,analog-to-digital conversion,and stable radio-frequency signal transfer. Challenges in implementation of these components and subsystems for meeting the technique requirements of the multifunction radar applications are discussed.
基金Project supported by the National Natural Science Foundation for Distinguished Young Scholars(Grant No.61725503)Zhejiang Provincial Natural Science Foundation(Grant No.Z18F050002)+1 种基金the National Natural Science Foundation of China(Grant Nos.61431166001 and 11861121002)the National Major Research and Development Program of China(Grant No.2016YFB0402502)
文摘The field of silicon nanophotonics has attracted considerable attention in the past decade because of its unique advantages,including complementary metal–oxide–semiconductor(CMOS) compatibility and the ability to achieve an ultra-high integration density. In particular, silicon nanophotonic integrated devices for on-chip light manipulation have been developed successfully and have played very import roles in various applications. In this paper, we review the recent progress of silicon nanophotonic devices for on-chip light manipulation, including the static type and the dynamic type. Static onchip light manipulation focuses on polarization/mode manipulation, as well as light nanofocusing, while dynamic on-chip light manipulation focuses on optical modulation/switching. The challenges and prospects of high-performance silicon nanophotonic integrated devices for on-chip light manipulation are discussed.
基金Project supported by the Natural Science Foundation of Henan Provincial Educational Committee,China(Grant No.21A140026).
文摘Based on Dirac semimetal metamaterials,the tunable plasmon induced transparency(PIT)is investigated elaborately in this work.The designed unit cell consists of a strip and a square bracket,which is periodically aligned on the dielectric substrate.Our numerical results illustrate that a pronounced transparency window exists due to near field coupling between two bright modes,which can be dynamically tuned with Fermi energy.Namely,the transparency window demonstrates a distinct blue shift with a larger Fermi energy.Moreover,an on-to-off switch of the PIT transparency window is realized with different polarization angles.In addition,the accompanied slow light property is examined with the calculation of phase and group delay.Finally,a small variation of the refractive index of the substrate can induce a clear movement of the PIT transparency window which delivers a guidance in the application of optical sensing.Thus,this work provides us a new strategy to design compact and adjustable PIT devices and has potential applications in highly tunable optical switchers,sensors,and slow light devices.