Capcity both in uplink and downlink of TD-SCDMA (time division-synchronous code division multiple access) system is studied in a multi-cell environment. The theoretical expressions of the mean of intercell interferenc...Capcity both in uplink and downlink of TD-SCDMA (time division-synchronous code division multiple access) system is studied in a multi-cell environment. The theoretical expressions of the mean of intercell interference in uplink and the mean of sum of power allocation in downlink are given, by which uplink and downlink capacity is analyzed. Furthermore, we give the simulation models for both uplink and downlink capacity. The results from theoretical analysis and simulation fit very well. In the end, the maximum number of users that TD-SCDMA system can serve for 12.2 k speech service is given.展开更多
Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very sca...Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very scarce resource as the radio spectrum. A new scheme was proposed which extends the concepts of resource sharing and reservations for wideband code division multiple access (WCDMA) systems with a unique feature of soft capacity. Voice and data traffic were considered. The traffic is further classified into handoff and new requests. The reservation thresholds were dynamically adjusted according to the traffic pattern and mobility prediction in order to achieve the maximum channel utilization, while guaranteeing different QoS constraints. The performance of proposed scheme was evaluated using Markov models. New call blocking probability, handoff call dropping probability, and channel utilization were used as benchmarks for the proposed scheme.展开更多
Direct-sequence code-division multiple access (CDMA) is considered for multiuser communication network in underwater acoustic channel, where extended multipath and rapid time-variability are encountered. To track and ...Direct-sequence code-division multiple access (CDMA) is considered for multiuser communication network in underwater acoustic channel, where extended multipath and rapid time-variability are encountered. To track and compensate the channel distortion, a decentralized hypothesis-feedback equalization (HFE) algorithm based on chip-rate update has been used[1]. But due to multiple access interference (MAI), its performance suffers degradation. For this reason, successive interference cancellation hypothesis-feedback equalization (SIC-HFE) algorithm is proposed, which combines the capabilities of HFE to track the time-varying channel and SIC implemented by cross-over feedback filters to cancel out the MAI effects between users. Simulation and experiment results show that the proposed algorithm can significantly improve the performance of asynchronous multiuser CDMA underwater communication system.展开更多
In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space divis...In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space division multiple access, and a sensor node uses a modulating retro-reflector for communication. Thus while a random sampling matrix is used to guide the establishment of links between head cluster and sensor nodes, the random linear projection is accomplished. To establish multiple links at the same time, an optical space division multiple access antenna is designed. It works in fixed beams switching mode and consists of optic lens with a large field of view(FOV), fiber array on the focal plane which is used to realize virtual channels segmentation, direction of arrival sensor, optical matrix switch and controller. Based on the angles of nodes' laser beams, by dynamically changing the route, optical matrix switch actualizes the multi-beam full duplex tracking receiving and transmission. Due to the structure of fiber array, there will be several fade zones both in the focal plane and in lens' FOV. In order to lower the impact of fade zones and harmonize multibeam, a fiber array adjustment is designed. By theoretical, simulated and experimental study, the antenna's qualitative feasibility is validated.展开更多
Power control is an important technique in WCDMA mobile systems for both increasing system capacity and guaranteeing the required QoS (time delay and wireless link transmission quality) of multimedia services. The opt...Power control is an important technique in WCDMA mobile systems for both increasing system capacity and guaranteeing the required QoS (time delay and wireless link transmission quality) of multimedia services. The optimum power control for narrow band CDMA cellular systems is a problem of single threshold optimization. Because these systems have only one type of traffic and have the same QoS requirement. However, WCDMA mobile system should provide multimedia services and different types of traffic have different QoS requirements. Thus, the power control in WCDMA mobile systems isn't a problem of single threshold optimizing, but turns into the optimizing problem of multi-threshold. We analyze the power control problem in WCDMA cellular mobile systems and propose the optimum transmitter power control algorithm. Three criteria to optimize transmitter power levels of multi-thresholds based on grading the priority orders of multimedia services are proposed. Simulation results show that the proposed algorithms are more effective than conventional algorithms and can provide better performance for WCDMA cellular mobile systems.展开更多
The multicarrier code division multiple access (MC-CDMA) systems without cyclic prefix (CP) hold a fine spectral efficiency though they are unavoidably corrupted by the intersymbol interference (ISI) over the finite i...The multicarrier code division multiple access (MC-CDMA) systems without cyclic prefix (CP) hold a fine spectral efficiency though they are unavoidably corrupted by the intersymbol interference (ISI) over the finite impulse response (FIR) channel. We call MC-CDMA systems without CP the ISI-corrupted MC-CDMA systems in some sense. Considering the fact that combining antenna arrays with so-called ISI-corrupted MC-CDMA systems is advantageous in suppressing cochannel interference in cellular communication systems, this paper investigates ISI-corrupted MC-CDMA systems with base station antenna arrays. Joint space-time multiuser detection (MUD) schemes for DS-CDMA systems with antenna arrays have drawn much attention recently. Based upon them, we can derive the equivalent joint spatial-temporal MUD scheme for ISI-corrupted MC-CDMA systems with antenna arrays. In order to achieve this goal, an equivalent space-time estimation method of uplink vector channel is first derived for the ISI-corrupted MC-CDMA system with the arbitrary antenna array over frequency-selective fading channels. Then, based on the estimated equivalent space-time channel, an equivalent joint space-time multiuser detector is constructed. Computer simulations illustrate that our algorithm is more robust against noise and can well mitigate multiple access interference (MAI) in multiuser scenarios.展开更多
Many blind channel estimation methods have been proposed for direct sequence (DS) code-division multiple access (CDMA) systems, so we can certainly use them to estimate the finite impulse response (FIR) channel for th...Many blind channel estimation methods have been proposed for direct sequence (DS) code-division multiple access (CDMA) systems, so we can certainly use them to estimate the finite impulse response (FIR) channel for the multi-carrier (MC-) CDMA system. In this paper, the MC-CDMA system is interpreted as an equivalent time-domain DS-CD-MA system with specific spreading codes. Then, an equivalently time-domain blind channel estimator is derived for the uplink MC-CDMA, which is based on second-order statistics of the received data. By exploiting singular value decomposition (SVD) and the finite alphabet property of transmitted symbols, the time-domain channel impulse response (CIR) for the uplink MC-CDMA can be accurately identified. Computer simulations illustrate both the validity and the overall performance of the proposed estimator.展开更多
文摘Capcity both in uplink and downlink of TD-SCDMA (time division-synchronous code division multiple access) system is studied in a multi-cell environment. The theoretical expressions of the mean of intercell interference in uplink and the mean of sum of power allocation in downlink are given, by which uplink and downlink capacity is analyzed. Furthermore, we give the simulation models for both uplink and downlink capacity. The results from theoretical analysis and simulation fit very well. In the end, the maximum number of users that TD-SCDMA system can serve for 12.2 k speech service is given.
文摘Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very scarce resource as the radio spectrum. A new scheme was proposed which extends the concepts of resource sharing and reservations for wideband code division multiple access (WCDMA) systems with a unique feature of soft capacity. Voice and data traffic were considered. The traffic is further classified into handoff and new requests. The reservation thresholds were dynamically adjusted according to the traffic pattern and mobility prediction in order to achieve the maximum channel utilization, while guaranteeing different QoS constraints. The performance of proposed scheme was evaluated using Markov models. New call blocking probability, handoff call dropping probability, and channel utilization were used as benchmarks for the proposed scheme.
基金National Natural Science Foundation of China (60572098)
文摘Direct-sequence code-division multiple access (CDMA) is considered for multiuser communication network in underwater acoustic channel, where extended multipath and rapid time-variability are encountered. To track and compensate the channel distortion, a decentralized hypothesis-feedback equalization (HFE) algorithm based on chip-rate update has been used[1]. But due to multiple access interference (MAI), its performance suffers degradation. For this reason, successive interference cancellation hypothesis-feedback equalization (SIC-HFE) algorithm is proposed, which combines the capabilities of HFE to track the time-varying channel and SIC implemented by cross-over feedback filters to cancel out the MAI effects between users. Simulation and experiment results show that the proposed algorithm can significantly improve the performance of asynchronous multiuser CDMA underwater communication system.
基金supported by the National Natural Science Foundation of China(61372069)and the"111"Project(B08038)
文摘In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space division multiple access, and a sensor node uses a modulating retro-reflector for communication. Thus while a random sampling matrix is used to guide the establishment of links between head cluster and sensor nodes, the random linear projection is accomplished. To establish multiple links at the same time, an optical space division multiple access antenna is designed. It works in fixed beams switching mode and consists of optic lens with a large field of view(FOV), fiber array on the focal plane which is used to realize virtual channels segmentation, direction of arrival sensor, optical matrix switch and controller. Based on the angles of nodes' laser beams, by dynamically changing the route, optical matrix switch actualizes the multi-beam full duplex tracking receiving and transmission. Due to the structure of fiber array, there will be several fade zones both in the focal plane and in lens' FOV. In order to lower the impact of fade zones and harmonize multibeam, a fiber array adjustment is designed. By theoretical, simulated and experimental study, the antenna's qualitative feasibility is validated.
文摘Power control is an important technique in WCDMA mobile systems for both increasing system capacity and guaranteeing the required QoS (time delay and wireless link transmission quality) of multimedia services. The optimum power control for narrow band CDMA cellular systems is a problem of single threshold optimization. Because these systems have only one type of traffic and have the same QoS requirement. However, WCDMA mobile system should provide multimedia services and different types of traffic have different QoS requirements. Thus, the power control in WCDMA mobile systems isn't a problem of single threshold optimizing, but turns into the optimizing problem of multi-threshold. We analyze the power control problem in WCDMA cellular mobile systems and propose the optimum transmitter power control algorithm. Three criteria to optimize transmitter power levels of multi-thresholds based on grading the priority orders of multimedia services are proposed. Simulation results show that the proposed algorithms are more effective than conventional algorithms and can provide better performance for WCDMA cellular mobile systems.
基金National Natural Science Foundation(69872029)Doctoral Program of Higher Education of China(1999069808).
文摘The multicarrier code division multiple access (MC-CDMA) systems without cyclic prefix (CP) hold a fine spectral efficiency though they are unavoidably corrupted by the intersymbol interference (ISI) over the finite impulse response (FIR) channel. We call MC-CDMA systems without CP the ISI-corrupted MC-CDMA systems in some sense. Considering the fact that combining antenna arrays with so-called ISI-corrupted MC-CDMA systems is advantageous in suppressing cochannel interference in cellular communication systems, this paper investigates ISI-corrupted MC-CDMA systems with base station antenna arrays. Joint space-time multiuser detection (MUD) schemes for DS-CDMA systems with antenna arrays have drawn much attention recently. Based upon them, we can derive the equivalent joint spatial-temporal MUD scheme for ISI-corrupted MC-CDMA systems with antenna arrays. In order to achieve this goal, an equivalent space-time estimation method of uplink vector channel is first derived for the ISI-corrupted MC-CDMA system with the arbitrary antenna array over frequency-selective fading channels. Then, based on the estimated equivalent space-time channel, an equivalent joint space-time multiuser detector is constructed. Computer simulations illustrate that our algorithm is more robust against noise and can well mitigate multiple access interference (MAI) in multiuser scenarios.
基金This project was supported by the National Natural Science Foundation of China (No. 69872029) the Research Fund for Doctoral Program of Higher Education of China (No. 1999069808).
文摘Many blind channel estimation methods have been proposed for direct sequence (DS) code-division multiple access (CDMA) systems, so we can certainly use them to estimate the finite impulse response (FIR) channel for the multi-carrier (MC-) CDMA system. In this paper, the MC-CDMA system is interpreted as an equivalent time-domain DS-CD-MA system with specific spreading codes. Then, an equivalently time-domain blind channel estimator is derived for the uplink MC-CDMA, which is based on second-order statistics of the received data. By exploiting singular value decomposition (SVD) and the finite alphabet property of transmitted symbols, the time-domain channel impulse response (CIR) for the uplink MC-CDMA can be accurately identified. Computer simulations illustrate both the validity and the overall performance of the proposed estimator.