We discuss the influences of two different types of mechanisms of quantum coherence on optical bistability in a semiconductor quantum well structure.In the first mechanism,only quantum coherence induced by the resonan...We discuss the influences of two different types of mechanisms of quantum coherence on optical bistability in a semiconductor quantum well structure.In the first mechanism,only quantum coherence induced by the resonant coupling of a strong control laser is considered.In the second mechanism,the decay coherence is taken into account under the condition where the control field is weak.In two different cases,optical bistability can be obtained through choosing appropriate physical parameters.Our studies show quantum coherence makes the optical nonlinear effect of the system become stronger,which takes an important role in the process of generating optical bistability.A semiconductor quantum well with flexibility and easy integration in design could potentially be exploited in real solid-state devices.展开更多
Bistability behaviors in an optical ring cavity filled with a dense V-type four-level atomic medium are theoretically investigated. It is found that the optical bistability can appear in the negative refraction freque...Bistability behaviors in an optical ring cavity filled with a dense V-type four-level atomic medium are theoretically investigated. It is found that the optical bistability can appear in the negative refraction frequency band, while both the bistability and multi-stability can occur in the positive refraction frequency bands. Therefore, optical bistability can be realized from conventional material to negative index material due to quantum coherence in our scheme.展开更多
This paper studies the effects of vacuum-induced coherence (VIC) in a four-level atomic system. The effects of VIC lead to the coherent hole burnings exhibited in the system at some certain points of the Rabi freque...This paper studies the effects of vacuum-induced coherence (VIC) in a four-level atomic system. The effects of VIC lead to the coherent hole burnings exhibited in the system at some certain points of the Rabi frequency. This is also the reason for the enhancement of the coherent population trapping. In addition, optical bistability occurs in the evolution curves of absorption versus the phase of Rabi frequencies.展开更多
The generation of nonclassical photons via quantum light–matter interactions is of fundamental importance in quantum optics.Here we investigate steady-state two-photon correlation function and photon squeezing in an ...The generation of nonclassical photons via quantum light–matter interactions is of fundamental importance in quantum optics.Here we investigate steady-state two-photon correlation function and photon squeezing in an open anisotropic Rabi lattice by applying quantum dressed master equation embedded with the mean-field approximation.The expanded antibunching effect of photons due to anisotropic qubit–photon interaction,is strongly suppressed by including inter-site photon tunneling,whereas the giant photon bunching keeps robust with weak inter-site photon tunneling strength.The microscopic processes for photon antibunching and bunching effects are presented based on incoherent transitions between eigenstates.The photon squeezing is also analyzed under the influences of qubit–photon coupling and anisotropic factor.The quadrature squeezing shows persistency by tuning on the inter-site photon tunneling,and becomes dramatically pronounced at the small anisotropic factor.Moreover,the increasing number of qubits significantly enhances quadrature squeezing with strong qubit–photon interaction.We hope such results may provide physical insights into efficient generation and manipulation of nonclassical features of photons in quantum light–matter interacting lattice systems.展开更多
We present an experimental study on tilt-tip(TT) and phase-locking(PL) control in a coherent beam combination(CBC) system of adaptive fiber laser array.The TT control is performed using the adaptive fiber-optics...We present an experimental study on tilt-tip(TT) and phase-locking(PL) control in a coherent beam combination(CBC) system of adaptive fiber laser array.The TT control is performed using the adaptive fiber-optics collimator(AFOC),and the PL control is realized by the phase modulator(PM).Cascaded and simultaneous controls of TT and PL using stochastic parallel gradient descent(SPGD) algorithm are investigated in this paper.Two-fiber-laser-,four-fiber-laser-,and six-fiber-laser-arrays are employed to study the TT and PL control.In the cascaded control system,only one high-speed CMOS camera is used to collect beam data and a computer is used as the controller.In a simultaneous control system one high-speed CMOS camera and one photonic detector(PD) are employed,and a computer and a control circuit based on field programmable gate array(FPGA) are used as the controllers.Experimental results reveal that both cascaded and simultaneous controls of TT using AFOC and PL using PM in fiber laser array are feasible and effective.Cascaded control is more effective in static control situation and simultaneous control can be applied to the dynamic control system directly.The control signals of simultaneous PL and TT disturb each other obviously and TT and PL control may compete with each other,so the control effect is limited.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11165008 and 11065007)the Natural Science Foundation of Jiangxi Province,China (Grant Nos. 20114BAB202001 and 2010GQW0011)the Science Foundation of East China Jiaotong University,China (Grant No. 10JC03)
文摘We discuss the influences of two different types of mechanisms of quantum coherence on optical bistability in a semiconductor quantum well structure.In the first mechanism,only quantum coherence induced by the resonant coupling of a strong control laser is considered.In the second mechanism,the decay coherence is taken into account under the condition where the control field is weak.In two different cases,optical bistability can be obtained through choosing appropriate physical parameters.Our studies show quantum coherence makes the optical nonlinear effect of the system become stronger,which takes an important role in the process of generating optical bistability.A semiconductor quantum well with flexibility and easy integration in design could potentially be exploited in real solid-state devices.
基金Project supported by the Fundamental Research Funds for the Central University (Grant Nos.GK201002024 and GK201003003)the National Natural Science Foundation of China (Grant Nos.11104176 and 11104185)+2 种基金the Natural Science Foundation of Shaanxi Province,China (Grant No.2011JQ1008)the Special Fund of Shanghai Outstanding Young Teachers,China (Grant Nos.slg10054 and slg10023)the Innovation Program of Shanghai Municipal Education Commission,China (Grant No.11YZ118)
文摘Bistability behaviors in an optical ring cavity filled with a dense V-type four-level atomic medium are theoretically investigated. It is found that the optical bistability can appear in the negative refraction frequency band, while both the bistability and multi-stability can occur in the positive refraction frequency bands. Therefore, optical bistability can be realized from conventional material to negative index material due to quantum coherence in our scheme.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10464002 and 60768001)the Youth Foundation of Guangdong University of Technology (Grant No. 072020)
文摘This paper studies the effects of vacuum-induced coherence (VIC) in a four-level atomic system. The effects of VIC lead to the coherent hole burnings exhibited in the system at some certain points of the Rabi frequency. This is also the reason for the enhancement of the coherent population trapping. In addition, optical bistability occurs in the evolution curves of absorption versus the phase of Rabi frequencies.
基金Project supported by the National Natural Science Foundation of China(Grant No.11874011)the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology.
文摘The generation of nonclassical photons via quantum light–matter interactions is of fundamental importance in quantum optics.Here we investigate steady-state two-photon correlation function and photon squeezing in an open anisotropic Rabi lattice by applying quantum dressed master equation embedded with the mean-field approximation.The expanded antibunching effect of photons due to anisotropic qubit–photon interaction,is strongly suppressed by including inter-site photon tunneling,whereas the giant photon bunching keeps robust with weak inter-site photon tunneling strength.The microscopic processes for photon antibunching and bunching effects are presented based on incoherent transitions between eigenstates.The photon squeezing is also analyzed under the influences of qubit–photon coupling and anisotropic factor.The quadrature squeezing shows persistency by tuning on the inter-site photon tunneling,and becomes dramatically pronounced at the small anisotropic factor.Moreover,the increasing number of qubits significantly enhances quadrature squeezing with strong qubit–photon interaction.We hope such results may provide physical insights into efficient generation and manipulation of nonclassical features of photons in quantum light–matter interacting lattice systems.
文摘We present an experimental study on tilt-tip(TT) and phase-locking(PL) control in a coherent beam combination(CBC) system of adaptive fiber laser array.The TT control is performed using the adaptive fiber-optics collimator(AFOC),and the PL control is realized by the phase modulator(PM).Cascaded and simultaneous controls of TT and PL using stochastic parallel gradient descent(SPGD) algorithm are investigated in this paper.Two-fiber-laser-,four-fiber-laser-,and six-fiber-laser-arrays are employed to study the TT and PL control.In the cascaded control system,only one high-speed CMOS camera is used to collect beam data and a computer is used as the controller.In a simultaneous control system one high-speed CMOS camera and one photonic detector(PD) are employed,and a computer and a control circuit based on field programmable gate array(FPGA) are used as the controllers.Experimental results reveal that both cascaded and simultaneous controls of TT using AFOC and PL using PM in fiber laser array are feasible and effective.Cascaded control is more effective in static control situation and simultaneous control can be applied to the dynamic control system directly.The control signals of simultaneous PL and TT disturb each other obviously and TT and PL control may compete with each other,so the control effect is limited.