Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality c...Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality characteristics of SPOF limit their integration with traditional fiber optic sensors.This article introduces for the first time a flexible fiber optic vibration sensor based on laser interference technology,which can be applied to vibration measurement under high stretch conditions.This sensor utilizes elastic optical fibers made of polydimethylsiloxane(PDMS)as sensing elements,combined with phase generating carrier technology,to achieve vibration measurement at 50−260 Hz within the stretch range of 0−42%.展开更多
The morphological description of wear particles in lubricating oil is crucial for wear state monitoring and fault diagnosis in aero-engines.Accurately and comprehensively acquiring three-dimensional(3D)morphological d...The morphological description of wear particles in lubricating oil is crucial for wear state monitoring and fault diagnosis in aero-engines.Accurately and comprehensively acquiring three-dimensional(3D)morphological data of these particles has became a key focus in wear debris analysis.Herein,we develop a novel multi-view polarization-sensitive optical coherence tomography(PS-OCT)method to achieve accurate 3D morphology detection and reconstruction of aero-engine lubricant wear particles,effectively resolving occlusion-induced information loss while enabling material-specific characterization.The particle morphology is captured by multi-view imaging,followed by filtering,sharpening,and contour recognition.The method integrates advanced registration algorithms with Poisson reconstruction to generate high-precision 3D models.This approach not only provides accurate 3D morphological reconstruction but also mitigates information loss caused by particle occlusion,ensuring model completeness.Furthermore,by collecting polarization characteristics of typical metals and their oxides in aero-engine lubricants,this work comprehensively characterizes and comparatively analyzes particle polarization properties using Stokes vectors,polarization uniformity,and cumulative phase retardation,and obtains a three-dimensional model containing polarization information.Ultimately,the proposed method enables multidimensional information acquisition for the reliable identification of abrasive particle types.展开更多
Herein,we report the synthesis and third-order nonlinear optical(NLO)properties of a novel cage-based 2D metal-organic framework constructed from Ti_(4)L_(6)(L4-=embonate)cage combined with Mg^(2+)and tris[4-(1H-imida...Herein,we report the synthesis and third-order nonlinear optical(NLO)properties of a novel cage-based 2D metal-organic framework constructed from Ti_(4)L_(6)(L4-=embonate)cage combined with Mg^(2+)and tris[4-(1H-imidazol-1-yl)phenyl]amine(tipa)ligand,whose molecular formula is(Me_(2)CH_(2))_(2)[Mg_(3)(Ti_(4)L_(6))(tipa)(H_(2)O)_(12)](PTC‑378).The Ti_(4)L_(6)tetrahedral cages serve as robust building units,while the Mg^(2+)ions and tipa ligands provide structural stability and tunable optical properties.The resulting PTC‑378 film exhibited intriguing third-order NLO property,which was systematically investigated using Z-scan techniques.Our results demonstrate that the synergistic interaction between Ti_(4)L_(6)cages andπ-conjugated ligands significantly enhances the NLO performance of the materials.CCDC:2453909.展开更多
In this work,the generation of high signal-to-noise ratio(SNR)single-frequency microwave signal without noise sidebands is demonstrated based on the interaction of integrated all-fiber lasers.The microwave signals are...In this work,the generation of high signal-to-noise ratio(SNR)single-frequency microwave signal without noise sidebands is demonstrated based on the interaction of integrated all-fiber lasers.The microwave signals are generated by the interference between a narrow linewidth Brillouin pump light from a single-frequency laser and the Stokes light generated by it.Firstly,the linewidths of the Stokes lights are compressed to~43 Hz based on the stimulated Brillouin scattering(SBS)effect,which ensures that the frequency noise is as low as possible.And then,the relative intensity noise(RIN)of the first order Stokes light is reduced by 21 dB/Hz based on the noise dynamics principle in cascaded SBS effect.By simultaneously reducing the frequency noise and the intensity noise of the coherent signals,the noise sidebands of microwave signals are completely suppressed.As result,the SNR of the microwave signal is improved from 48 dB to 84 dB at the first-order Brillouin frequency shift of 9.415 GHz.Meanwhile,a microwave signal with a SNR of 70 dB is generated at the second-order Brillouin frequency shift of 18.827 GHz.This kind of microwave signals with narrow linewidth and high SNR can provide higher detection resolution and higher transmission efficiency for applications on radar,satellite communication and so on.展开更多
Optical field manipulation,an emerging frontier in photonics,demonstrates significant potential in biomedical microscopy,quantum state engineering,and micro-nano fabrication.To address the critical limitations of curr...Optical field manipulation,an emerging frontier in photonics,demonstrates significant potential in biomedical microscopy,quantum state engineering,and micro-nano fabrication.To address the critical limitations of current optical modulation technologies in achieving full-parameter precision control,we proposed a novel approach for dynamic azimuthal optical field modulation based on dual-spiral arrays.By designing spatially interleaved spiral structures with different initial radii while maintaining identical periodic parameters,we achieved continuous optical modulation spanning the full 0-2πrange in azimuthal field distribution.Through rigorous numerical simulations,we systematically established a quantitative correlation between the structural parameters and azimuthal optical field patterns,revealing,for the first time,a quasi-linear relationship between the radius difference and the resultant optical distribution.This theoretical framework advances our fundamental understanding of structured optical field manipulation as well as provides a new paradigm for programmable photonic device design,with distinct technical advantages in super-resolution imaging and optical tweezer systems.展开更多
The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precisio...The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precision.To ensure its accuracy of detection,it is necessary to correlate their thermal models to in-orbit da⁃ta.In this work,an investigation of intelligent correlation method named Intelligent Correlation Platform for Ther⁃mal Model(ICP-TM)was established,the advanced Kriging surrogate model and efficient adaptive region opti⁃mization algorithm were introduced.After the correlation with this method for FY-3E/HIRAS-Ⅱ,the results indi⁃cate that compared with the data in orbit,the error of the thermal model has decreased from 5 K to within±1 K in cold case(10℃).Then,the correlated model is validated in hot case(20℃),and the correlated model exhibits good universality.This correlation precision is also much superiors to the general ones like 3 K in other similar lit⁃erature.Furthermore,the process is finished in 8 days using ICP-TM,the efficiency is much better than 3 months based on manual.The results show that the proposed approach significantly enhances the accuracy and efficiency of thermal model,this contributes to the precise thermal control of subsequent infrared optical payloads.展开更多
The second near-infrared window(NIR-II,900-1880 nm)overcomes critical limitations of visible(360-760 nm)and NIR-I(760-900 nm)imaging—including restricted penetration depth,low signal-to-back⁃ground ratio,and tissue a...The second near-infrared window(NIR-II,900-1880 nm)overcomes critical limitations of visible(360-760 nm)and NIR-I(760-900 nm)imaging—including restricted penetration depth,low signal-to-back⁃ground ratio,and tissue autofluorescence—establishing its pivotal role for in vivo deep-tissue bioimaging.With exponential growth in NIR-II photodiagnosis and phototherapy research over the past decade,bibliometric analy⁃sis is essential to map the evolving landscape and guide strategic priorities.We systematically analyzed 2,491 NIR-II-related publications(2009-2023)from the Web of Science Core Collection,employing scientometric tools for distinct analytical purposes:(a)VOSviewer,SCImago Graphica,and Gephi for co-authorship and co-occur⁃rence network mapping;(b)the R bibliometrix package for tracking field evolution and identifying high-impact publications/journals.The search retrieved 2491 studies from 359 journals originating from 54 countries.The country with the most published articles is China.Chinese institutions drive>60%of publications,with Stanford University(USA)and Nanyang Technological University(Singapore)ranked as the top two institutions by re⁃search quality.International cooperation is becoming increasingly frequent.Fan Quli,Tang Benzhong and Dai Hongjie are the top 3 productive authors in this field.Keyword evolution identifies"photodynamic therapy"and"immunotherapy"as pivotal future directions.We summarize the most cited literatures and NIR-II imaging clini⁃cal trials.This study delineates the NIR-II research trajectory,highlighting China's leadership,intensifying glob⁃al collaboration,and interdisciplinary convergence.Future efforts should prioritize the novel NIR-II probe devel⁃opment for NIR-II imaging and clinical translation of photodynamic/immunotherapy combinational platforms.展开更多
The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex...The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex beams for various applications.In this work,the second harmonic(SH)optical vortex beams generated from nonlinear fork gratings under Gaussian beam illumination are numerically investigated.The far-field intensity and phase distributions,as well as the orbital angular momentum(OAM)spectra of the SH beams,are analyzed for different structural topological charges and diffraction orders.Results reveal that higher-order diffraction and larger structural topological charges lead to angular interference patterns and non-uniform intensity distributions,deviating from the standard vortex profile.To optimize the SH vortex quality,the effects of the fundamental wave beam waist,crystal thickness,and grating duty cycle are explored.It is shown that increasing the beam waist can effectively suppress diffraction order interference and improve the beam’s quality.This study provides theoretical guidance for enhancing the performance of nonlinear optical devices based on NPCs.展开更多
Fourier Ptychographic Microscopy(FPM)is a high-throughput computational optical imaging technology reported in 2013.It effectively breaks through the trade-off between high-resolution imaging and wide-field imaging.In...Fourier Ptychographic Microscopy(FPM)is a high-throughput computational optical imaging technology reported in 2013.It effectively breaks through the trade-off between high-resolution imaging and wide-field imaging.In recent years,it has been found that FPM is not only a tool to break through the trade-off between field of view and spatial resolution,but also a paradigm to break through those trade-off problems,thus attracting extensive attention.Compared with previous reviews,this review does not introduce its concept,basic principles,optical system and series of applications once again,but focuses on elaborating the three major difficulties faced by FPM technology in the process from“looking good”in the laboratory to“working well”in practical applications:mismatch between numerical model and physical reality,long reconstruction time and high computing power demand,and lack of multi-modal expansion.It introduces how to achieve key technological innovations in FPM through the dual drive of Artificial Intelligence(AI)and physics,including intelligent reconstruction algorithms introducing machine learning concepts,optical-algorithm co-design,fusion of frequency domain extrapolation methods and generative adversarial networks,multi-modal imaging schemes and data fusion enhancement,etc.,gradually solving the difficulties of FPM technology.Conversely,this review deeply considers the unique value of FPM technology in potentially feeding back to the development of“AI+optics”,such as providing AI benchmark tests under physical constraints,inspirations for the balance of computing power and bandwidth in miniaturized intelligent microscopes,and photoelectric hybrid architectures.Finally,it introduces the industrialization path and frontier directions of FPM technology,pointing out that with the promotion of the dual drive of AI and physics,it will generate a large number of industrial application case,and looks forward to the possibilities of future application scenarios and expansions,for instance,body fluid biopsy and point-of-care testing at the grassroots level represent the expansion of the growth market.展开更多
The memory behavior in liquid crystals(LCs)that is characterized by low cost,large area,high speed,and high-density memory has evolved from a mere scientific curiosity to a technology that is being applied in a variet...The memory behavior in liquid crystals(LCs)that is characterized by low cost,large area,high speed,and high-density memory has evolved from a mere scientific curiosity to a technology that is being applied in a variety of commodities.In this study,we utilized molybdenum disulfide(MoS_(2))nanoflakes as the guest in a homotropic LCs host to modulate the overall memory effect of the hybrid.It was found that the MoS₂nanoflakes within the LCs host formed agglomerates,which in turn resulted in an accelerated response of the hybrids to the external electric field.However,this process also resulted in a slight decrease in the threshold voltage.Additionally,it was observed that MoS₂nanoflakes in a LCs host tend to align homeotropically under an external electric field,thereby accelerating the refreshment of the memory behavior.The incorporation of a mass fraction of 0.1%2μm MoS₂nanoflakes into the LCs host was found to significantly reduce the refreshing memory behavior in the hybrid to 94.0 s under an external voltage of 5 V.These findings illustrate the efficacy of regulating the rate of memory behavior for a variety of potential applications.展开更多
Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2...Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2)O_(3) ceramics have been fabricated at very high sintering temperatures,but their optical quality and sintering process still need further improvement.In this work,5%Yb:Sc_(2)O_(3)(in mass)nano-powders were obtained by co-precipitation,and then transparent ceramics were fabricated by vacuum pre-sintering and hot isostatic pressing(HIP)post-treatment.The cubic Yb:Sc_(2)O_(3) nano-powders with good dispersity and an average crystallite of 29 nm were obtained.Influence of pre-sintering temperatures(1500-1700℃)on densification process,microstructure changes,and optical transmittance of Yb:Sc_(2)O_(3) ceramics was detected.Experimental data revealed that all samples have a uniform microstructure,while the average grain sizes increase with the increase of the sintering temperatures.Impressively,the optimum in-line transmittance of Yb:Sc_(2)O_(3) ceramics,pre-sintered at 1550℃after HIP post-treatment,reaches 78.1%(theoretical value of 80%)at 1100 nm.Spectroscopic properties of the Yb:Sc_(2)O_(3) ceramics reveal that the minimum population inversion parameterβ2 and the luminescence decay time of 5%Yb:Sc_(2)O_(3) ceramics are 0.041 and 0.49 ms,respectively,which demonstrate that the optical quality of the Yb:Sc_(2)O_(3) has been improved.Meanwhile,their best vacuum sintering temperature can be controlled down to a lower temperature(1550℃).In conclusion,Yb:Sc_(2)O_(3) nano-powders are successfully synthesized by co-precipitation method,and good optical quality transparent ceramics are fabricated by vacuum pre-sintering at 1550℃and HIP post-treatment.展开更多
This study explores the impact of bismuth oxide(Bi_(2)O_(3))on the optical and radiation shielding properties of transparent,lead-free thulium-doped bismuth borotellurite radiation shielding glass.The investigated gla...This study explores the impact of bismuth oxide(Bi_(2)O_(3))on the optical and radiation shielding properties of transparent,lead-free thulium-doped bismuth borotellurite radiation shielding glass.The investigated glass composition follows the formula[(TeO_(2))_(75)(B_(2)O_(3))_(25)]_(98-x)(Bi_(2)O_(3))_x[Tm_(2)O_(3)]_(2),where x=0 mol%,5 mol%,10 mol%,15 mol%,20 mol%,25 mol%,and 30 mol%.All glass samples remain transparent,with an optical bandgap(E_(opt))exceeding 3.1 e V,ensuring visible light transmission.Radiation shielding data from Phy-X and XCom reveal interactions of the photoelectric effect,Compton scattering,and pair production,with minimal relative difference in mass attenuation coefficient(MAC)which is between0.05 and 0.56.At 0.662 Me V photon energy,the 20 mol%and 25 mol%Bi_(2)O_(3)glasses exhibit significantly higher Phy-X MAC values than other samples,except RS 520 glass,which contains 71%Pb O.Despite incorporating only up to 25 mol%Bi_(2)O_(3),these glasses outperform others in density,half-value layer(HVL),and mean free path(MFP).Correlating E_(opt)and MAC,the 20 mol%Bi_(2)O_(3)glass is the best candidate for transparent radiation shielding glass due to its wide optical bandgap which prevents ionization of trapped holes.Significantly,the linkage between MFP and molar refraction was also discovered based on the particle size influence on both parameters.展开更多
A high precision detection technique is analyzed based on the optical micro electro-mechanical system(MEMS)accelerometer with double gratings for noise suppression and scale factor enhancement.The brief sensing model ...A high precision detection technique is analyzed based on the optical micro electro-mechanical system(MEMS)accelerometer with double gratings for noise suppression and scale factor enhancement.The brief sensing model and modulation detection model are built using the phase sensitive detection,and the relationship between stimulated acceleration and system output is given.The schematics of gap modulation and light intensity modulation are analyzed respectively,and the choice of modulation frequency in the optical MEMS accelerometer system is discussed.According to the experimental results,the scale factor is improved from 15.45 V/g with the gap modulation to 18.78 V/g with the light intensity modulation,and the signal to noise ratio is improved from 42.95 dB to 81.73 dB.The overall noise level in the optical MEMS accelerometer is effectively suppressed.展开更多
As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely...As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely used in aerospace, unmanned driving, and other fields. However, due to the temper-ature sensitivity of optical devices, the influence of environmen-tal temperature causes errors in FOG, thereby greatly limiting their output accuracy. This work researches on machine-learn-ing based temperature error compensation techniques for FOG. Specifically, it focuses on compensating for the bias errors gen-erated in the fiber ring due to the Shupe effect. This work pro-poses a composite model based on k-means clustering, sup-port vector regression, and particle swarm optimization algo-rithms. And it significantly reduced redundancy within the sam-ples by adopting the interval sequence sample. Moreover, met-rics such as root mean square error (RMSE), mean absolute error (MAE), bias stability, and Allan variance, are selected to evaluate the model’s performance and compensation effective-ness. This work effectively enhances the consistency between data and models across different temperature ranges and tem-perature gradients, improving the bias stability of the FOG from 0.022 °/h to 0.006 °/h. Compared to the existing methods utiliz-ing a single machine learning model, the proposed method increases the bias stability of the compensated FOG from 57.11% to 71.98%, and enhances the suppression of rate ramp noise coefficient from 2.29% to 14.83%. This work improves the accuracy of FOG after compensation, providing theoretical guid-ance and technical references for sensors error compensation work in other fields.展开更多
The nanofluid-based direct absorption solar collector(NDASC)ensures that solar radiation passing through the tube wall is directly absorbed by the nanofluid,reducing thermal resistance in the energy transfer process.H...The nanofluid-based direct absorption solar collector(NDASC)ensures that solar radiation passing through the tube wall is directly absorbed by the nanofluid,reducing thermal resistance in the energy transfer process.However,further exploration is required to suppress the outward thermal losses from the nanofluid at high temperatures.Herein,this paper proposes a novel NDASC in which the outer surface of the collector tube is covered with functional coatings and a three-dimensional computational fluid dynamics model is established to study the energy flow distributions on the collector within the temperature range of 400-600 K.When the nanofluid’s absorption coefficient reaches 80 m^(-1),the NDASC shows the optimal thermal performance,and the NDASC with local Sn-In_(2)O_(3) coating achieves a 7.8% improvement in thermal efficiency at 400 K compared to the original NDASC.Furthermore,hybrid coatings with Sn In_(2)O_(3)/WTi-Al_(2)O_(3) are explored,and the optimal coverage angles are determined.The NDASC with such coatings shows a 10.22%-17.9% increase in thermal efficiency compared to the original NDASC and a 7.6%-19.5% increase compared to the traditional surface-type solar collectors,demonstrating the effectiveness of the proposed energy flow control strategy for DASCs.展开更多
Vibration-induced bias deviation,which is generated by intensity fluctuations and additional phase differences,is one of the vital errors for fiber optic gyroscopes(FOGs)operating in vibration environment and has seve...Vibration-induced bias deviation,which is generated by intensity fluctuations and additional phase differences,is one of the vital errors for fiber optic gyroscopes(FOGs)operating in vibration environment and has severely restricted the applications of high-precision FOGs.The conventional methods for suppressing vibration-induced errors mostly concentrate on reinforcing the mechanical structure and optical path as well as the compensation under some specific operation parameters,which have very limited effects for high-precision FOGs maintaining performances under vibration.In this work,a technique of suppressing the vibration-induced bias deviation through removing the part related to the varying gain from the rotation-rate output is put forward.Particularly,the loop gain is extracted out by adding a gain-monitoring wave.By demodulating the loop gain and the rotation rate simultaneously under distinct frequencies and investigating their quantitative relationship,the vibrationinduced bias error is compensated without limiting the operating parameters or environments,like the applied modulation depth.The experimental results show that the proposed method has achieved the reduction of bias error from about 0.149°/h to0.014°/h during the random vibration with frequencies from20 Hz to 2000 Hz.This technique provides a feasible route for enhancing the performances of high-precision FOGs heading towards high environmental adaptability.展开更多
The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure t...The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure the reliability of an optimal UCL design,it is essential to account for the three primary scattering regimes:forward scattering(FSC),backward scattering(BSC),and isotropic scattering(ISC)in seawater channels.This study introduces a new photon-tracking model based on a discrete equation,facilitating Monte Carlo Simulation(MCS)to evaluate how different scattering regimes influence received photon distribution.Three distinct Scattering Regime Contribution Weight(SRCW)probability sets were employed,each representing different UCL operational configurations dominated by specific scattering regimes.The proposed modeling approach enables a comprehensive assessment of the temporal characteristics of received optical pulses,channel loss,and time spread-ultimately defining the optimal UCL design parameters.The key findings of this study include:(1)Enhancing the FSC regime dominance leads to a quasi-light waveguide effect over link spans and small Fields of View(FOV)<25°,significantly improving channel performance in Harbor seawater compared to Coastal seawater.(2)A well-designed UCL with a small FOV(<25°)can minimise channel loss and time spread,ensuring high capacity and efficient performance in both Coastal and Harbor seawaters.(3)When BSC and ISC contributions exceed FSC dominance,the received optical pulse undergoes significant temporal broadening,particularly for larger FOV angles(>25°)and extended link spans.(4)The developed novel MCS-based discrete equation provides a simple yet robust model for simulating photon propagation in both homogeneous and inhomogeneous underwater channels.These insights contribute to developing more efficient and reliable UCL designs with military standards by enhancing UWOC system performance over a longer linkspan for a given limited optical power across various underwater environments.展开更多
文摘Soft polymer optical fiber(SPOF)has shown great potential in optical-based wearable and implantable biosensors due to its excellent mechanical properties and optical guiding characteristics.However,the multimodality characteristics of SPOF limit their integration with traditional fiber optic sensors.This article introduces for the first time a flexible fiber optic vibration sensor based on laser interference technology,which can be applied to vibration measurement under high stretch conditions.This sensor utilizes elastic optical fibers made of polydimethylsiloxane(PDMS)as sensing elements,combined with phase generating carrier technology,to achieve vibration measurement at 50−260 Hz within the stretch range of 0−42%.
文摘The morphological description of wear particles in lubricating oil is crucial for wear state monitoring and fault diagnosis in aero-engines.Accurately and comprehensively acquiring three-dimensional(3D)morphological data of these particles has became a key focus in wear debris analysis.Herein,we develop a novel multi-view polarization-sensitive optical coherence tomography(PS-OCT)method to achieve accurate 3D morphology detection and reconstruction of aero-engine lubricant wear particles,effectively resolving occlusion-induced information loss while enabling material-specific characterization.The particle morphology is captured by multi-view imaging,followed by filtering,sharpening,and contour recognition.The method integrates advanced registration algorithms with Poisson reconstruction to generate high-precision 3D models.This approach not only provides accurate 3D morphological reconstruction but also mitigates information loss caused by particle occlusion,ensuring model completeness.Furthermore,by collecting polarization characteristics of typical metals and their oxides in aero-engine lubricants,this work comprehensively characterizes and comparatively analyzes particle polarization properties using Stokes vectors,polarization uniformity,and cumulative phase retardation,and obtains a three-dimensional model containing polarization information.Ultimately,the proposed method enables multidimensional information acquisition for the reliable identification of abrasive particle types.
文摘Herein,we report the synthesis and third-order nonlinear optical(NLO)properties of a novel cage-based 2D metal-organic framework constructed from Ti_(4)L_(6)(L4-=embonate)cage combined with Mg^(2+)and tris[4-(1H-imidazol-1-yl)phenyl]amine(tipa)ligand,whose molecular formula is(Me_(2)CH_(2))_(2)[Mg_(3)(Ti_(4)L_(6))(tipa)(H_(2)O)_(12)](PTC‑378).The Ti_(4)L_(6)tetrahedral cages serve as robust building units,while the Mg^(2+)ions and tipa ligands provide structural stability and tunable optical properties.The resulting PTC‑378 film exhibited intriguing third-order NLO property,which was systematically investigated using Z-scan techniques.Our results demonstrate that the synergistic interaction between Ti_(4)L_(6)cages andπ-conjugated ligands significantly enhances the NLO performance of the materials.CCDC:2453909.
文摘In this work,the generation of high signal-to-noise ratio(SNR)single-frequency microwave signal without noise sidebands is demonstrated based on the interaction of integrated all-fiber lasers.The microwave signals are generated by the interference between a narrow linewidth Brillouin pump light from a single-frequency laser and the Stokes light generated by it.Firstly,the linewidths of the Stokes lights are compressed to~43 Hz based on the stimulated Brillouin scattering(SBS)effect,which ensures that the frequency noise is as low as possible.And then,the relative intensity noise(RIN)of the first order Stokes light is reduced by 21 dB/Hz based on the noise dynamics principle in cascaded SBS effect.By simultaneously reducing the frequency noise and the intensity noise of the coherent signals,the noise sidebands of microwave signals are completely suppressed.As result,the SNR of the microwave signal is improved from 48 dB to 84 dB at the first-order Brillouin frequency shift of 9.415 GHz.Meanwhile,a microwave signal with a SNR of 70 dB is generated at the second-order Brillouin frequency shift of 18.827 GHz.This kind of microwave signals with narrow linewidth and high SNR can provide higher detection resolution and higher transmission efficiency for applications on radar,satellite communication and so on.
文摘Optical field manipulation,an emerging frontier in photonics,demonstrates significant potential in biomedical microscopy,quantum state engineering,and micro-nano fabrication.To address the critical limitations of current optical modulation technologies in achieving full-parameter precision control,we proposed a novel approach for dynamic azimuthal optical field modulation based on dual-spiral arrays.By designing spatially interleaved spiral structures with different initial radii while maintaining identical periodic parameters,we achieved continuous optical modulation spanning the full 0-2πrange in azimuthal field distribution.Through rigorous numerical simulations,we systematically established a quantitative correlation between the structural parameters and azimuthal optical field patterns,revealing,for the first time,a quasi-linear relationship between the radius difference and the resultant optical distribution.This theoretical framework advances our fundamental understanding of structured optical field manipulation as well as provides a new paradigm for programmable photonic device design,with distinct technical advantages in super-resolution imaging and optical tweezer systems.
基金Supported by the National Key Research and Development Program of China(2022YFB3904803)。
文摘The Infrared Hyperspectral Atmospheric SounderⅡ(HIRAS-Ⅱ)is the key equipment on FengYun-3E(FY-3E)satellite,which can realize vertical atmospheric detection,featuring hyper spectral,high sensitivity and high precision.To ensure its accuracy of detection,it is necessary to correlate their thermal models to in-orbit da⁃ta.In this work,an investigation of intelligent correlation method named Intelligent Correlation Platform for Ther⁃mal Model(ICP-TM)was established,the advanced Kriging surrogate model and efficient adaptive region opti⁃mization algorithm were introduced.After the correlation with this method for FY-3E/HIRAS-Ⅱ,the results indi⁃cate that compared with the data in orbit,the error of the thermal model has decreased from 5 K to within±1 K in cold case(10℃).Then,the correlated model is validated in hot case(20℃),and the correlated model exhibits good universality.This correlation precision is also much superiors to the general ones like 3 K in other similar lit⁃erature.Furthermore,the process is finished in 8 days using ICP-TM,the efficiency is much better than 3 months based on manual.The results show that the proposed approach significantly enhances the accuracy and efficiency of thermal model,this contributes to the precise thermal control of subsequent infrared optical payloads.
基金Supported by National Natural Science Foundation of China(81874059 and 82102105)the Natural Science Foundation of Zhejiang Province(LQ22H160017)the China Postdoctoral Science Foundation(2021M702825).
文摘The second near-infrared window(NIR-II,900-1880 nm)overcomes critical limitations of visible(360-760 nm)and NIR-I(760-900 nm)imaging—including restricted penetration depth,low signal-to-back⁃ground ratio,and tissue autofluorescence—establishing its pivotal role for in vivo deep-tissue bioimaging.With exponential growth in NIR-II photodiagnosis and phototherapy research over the past decade,bibliometric analy⁃sis is essential to map the evolving landscape and guide strategic priorities.We systematically analyzed 2,491 NIR-II-related publications(2009-2023)from the Web of Science Core Collection,employing scientometric tools for distinct analytical purposes:(a)VOSviewer,SCImago Graphica,and Gephi for co-authorship and co-occur⁃rence network mapping;(b)the R bibliometrix package for tracking field evolution and identifying high-impact publications/journals.The search retrieved 2491 studies from 359 journals originating from 54 countries.The country with the most published articles is China.Chinese institutions drive>60%of publications,with Stanford University(USA)and Nanyang Technological University(Singapore)ranked as the top two institutions by re⁃search quality.International cooperation is becoming increasingly frequent.Fan Quli,Tang Benzhong and Dai Hongjie are the top 3 productive authors in this field.Keyword evolution identifies"photodynamic therapy"and"immunotherapy"as pivotal future directions.We summarize the most cited literatures and NIR-II imaging clini⁃cal trials.This study delineates the NIR-II research trajectory,highlighting China's leadership,intensifying glob⁃al collaboration,and interdisciplinary convergence.Future efforts should prioritize the novel NIR-II probe devel⁃opment for NIR-II imaging and clinical translation of photodynamic/immunotherapy combinational platforms.
基金supported by the National Nat-ural Science Foundation of China(Nos.12192251,12174185,92163216,and 62288101).
文摘The generation of optical vortices from nonlinear photonic crystals(NPCs)with spatially modulated second-order nonlinearity offers a promising approach to extend the working wavelength and topological charge of vortex beams for various applications.In this work,the second harmonic(SH)optical vortex beams generated from nonlinear fork gratings under Gaussian beam illumination are numerically investigated.The far-field intensity and phase distributions,as well as the orbital angular momentum(OAM)spectra of the SH beams,are analyzed for different structural topological charges and diffraction orders.Results reveal that higher-order diffraction and larger structural topological charges lead to angular interference patterns and non-uniform intensity distributions,deviating from the standard vortex profile.To optimize the SH vortex quality,the effects of the fundamental wave beam waist,crystal thickness,and grating duty cycle are explored.It is shown that increasing the beam waist can effectively suppress diffraction order interference and improve the beam’s quality.This study provides theoretical guidance for enhancing the performance of nonlinear optical devices based on NPCs.
基金National Natural Science Foundation of China(No.12574332)the Space Optoelectronic Measurement and Perception Lab.,Beijing Institute of Control Engineering(No.LabSOMP-2023-10)Major Science and Technology Innovation Program of Xianyang City(No.L2024-ZDKJ-ZDCGZH-0021)。
文摘Fourier Ptychographic Microscopy(FPM)is a high-throughput computational optical imaging technology reported in 2013.It effectively breaks through the trade-off between high-resolution imaging and wide-field imaging.In recent years,it has been found that FPM is not only a tool to break through the trade-off between field of view and spatial resolution,but also a paradigm to break through those trade-off problems,thus attracting extensive attention.Compared with previous reviews,this review does not introduce its concept,basic principles,optical system and series of applications once again,but focuses on elaborating the three major difficulties faced by FPM technology in the process from“looking good”in the laboratory to“working well”in practical applications:mismatch between numerical model and physical reality,long reconstruction time and high computing power demand,and lack of multi-modal expansion.It introduces how to achieve key technological innovations in FPM through the dual drive of Artificial Intelligence(AI)and physics,including intelligent reconstruction algorithms introducing machine learning concepts,optical-algorithm co-design,fusion of frequency domain extrapolation methods and generative adversarial networks,multi-modal imaging schemes and data fusion enhancement,etc.,gradually solving the difficulties of FPM technology.Conversely,this review deeply considers the unique value of FPM technology in potentially feeding back to the development of“AI+optics”,such as providing AI benchmark tests under physical constraints,inspirations for the balance of computing power and bandwidth in miniaturized intelligent microscopes,and photoelectric hybrid architectures.Finally,it introduces the industrialization path and frontier directions of FPM technology,pointing out that with the promotion of the dual drive of AI and physics,it will generate a large number of industrial application case,and looks forward to the possibilities of future application scenarios and expansions,for instance,body fluid biopsy and point-of-care testing at the grassroots level represent the expansion of the growth market.
文摘The memory behavior in liquid crystals(LCs)that is characterized by low cost,large area,high speed,and high-density memory has evolved from a mere scientific curiosity to a technology that is being applied in a variety of commodities.In this study,we utilized molybdenum disulfide(MoS_(2))nanoflakes as the guest in a homotropic LCs host to modulate the overall memory effect of the hybrid.It was found that the MoS₂nanoflakes within the LCs host formed agglomerates,which in turn resulted in an accelerated response of the hybrids to the external electric field.However,this process also resulted in a slight decrease in the threshold voltage.Additionally,it was observed that MoS₂nanoflakes in a LCs host tend to align homeotropically under an external electric field,thereby accelerating the refreshment of the memory behavior.The incorporation of a mass fraction of 0.1%2μm MoS₂nanoflakes into the LCs host was found to significantly reduce the refreshing memory behavior in the hybrid to 94.0 s under an external voltage of 5 V.These findings illustrate the efficacy of regulating the rate of memory behavior for a variety of potential applications.
基金National Key R&D Program of China(2023YFE3812005)International Partnership Program of Chinese Academy of Sciences(121631KYSB20200039)+1 种基金National Center for Research and Development(WPC2/1/SCAPOL/2021)Chinese Academy of Sciences President’s International Fellowship Initiative(2024VEA0005,2024VEA0014)。
文摘Sc_(2)O_(3),as a host for solid-state laser gain materials,has advantage of high thermal conductivity and easy matching with activating ions,which is promising in high-power laser applications.Currently,Yb-doped Sc_(2)O_(3) ceramics have been fabricated at very high sintering temperatures,but their optical quality and sintering process still need further improvement.In this work,5%Yb:Sc_(2)O_(3)(in mass)nano-powders were obtained by co-precipitation,and then transparent ceramics were fabricated by vacuum pre-sintering and hot isostatic pressing(HIP)post-treatment.The cubic Yb:Sc_(2)O_(3) nano-powders with good dispersity and an average crystallite of 29 nm were obtained.Influence of pre-sintering temperatures(1500-1700℃)on densification process,microstructure changes,and optical transmittance of Yb:Sc_(2)O_(3) ceramics was detected.Experimental data revealed that all samples have a uniform microstructure,while the average grain sizes increase with the increase of the sintering temperatures.Impressively,the optimum in-line transmittance of Yb:Sc_(2)O_(3) ceramics,pre-sintered at 1550℃after HIP post-treatment,reaches 78.1%(theoretical value of 80%)at 1100 nm.Spectroscopic properties of the Yb:Sc_(2)O_(3) ceramics reveal that the minimum population inversion parameterβ2 and the luminescence decay time of 5%Yb:Sc_(2)O_(3) ceramics are 0.041 and 0.49 ms,respectively,which demonstrate that the optical quality of the Yb:Sc_(2)O_(3) has been improved.Meanwhile,their best vacuum sintering temperature can be controlled down to a lower temperature(1550℃).In conclusion,Yb:Sc_(2)O_(3) nano-powders are successfully synthesized by co-precipitation method,and good optical quality transparent ceramics are fabricated by vacuum pre-sintering at 1550℃and HIP post-treatment.
基金funded by the National Defence University of Malaysia(Grant No.UPNM/2022/GPJP/SG/3)My Brain Sc Scholarship 2023。
文摘This study explores the impact of bismuth oxide(Bi_(2)O_(3))on the optical and radiation shielding properties of transparent,lead-free thulium-doped bismuth borotellurite radiation shielding glass.The investigated glass composition follows the formula[(TeO_(2))_(75)(B_(2)O_(3))_(25)]_(98-x)(Bi_(2)O_(3))_x[Tm_(2)O_(3)]_(2),where x=0 mol%,5 mol%,10 mol%,15 mol%,20 mol%,25 mol%,and 30 mol%.All glass samples remain transparent,with an optical bandgap(E_(opt))exceeding 3.1 e V,ensuring visible light transmission.Radiation shielding data from Phy-X and XCom reveal interactions of the photoelectric effect,Compton scattering,and pair production,with minimal relative difference in mass attenuation coefficient(MAC)which is between0.05 and 0.56.At 0.662 Me V photon energy,the 20 mol%and 25 mol%Bi_(2)O_(3)glasses exhibit significantly higher Phy-X MAC values than other samples,except RS 520 glass,which contains 71%Pb O.Despite incorporating only up to 25 mol%Bi_(2)O_(3),these glasses outperform others in density,half-value layer(HVL),and mean free path(MFP).Correlating E_(opt)and MAC,the 20 mol%Bi_(2)O_(3)glass is the best candidate for transparent radiation shielding glass due to its wide optical bandgap which prevents ionization of trapped holes.Significantly,the linkage between MFP and molar refraction was also discovered based on the particle size influence on both parameters.
基金supported by the National Natural Science Foundation of China(62205377).
文摘A high precision detection technique is analyzed based on the optical micro electro-mechanical system(MEMS)accelerometer with double gratings for noise suppression and scale factor enhancement.The brief sensing model and modulation detection model are built using the phase sensitive detection,and the relationship between stimulated acceleration and system output is given.The schematics of gap modulation and light intensity modulation are analyzed respectively,and the choice of modulation frequency in the optical MEMS accelerometer system is discussed.According to the experimental results,the scale factor is improved from 15.45 V/g with the gap modulation to 18.78 V/g with the light intensity modulation,and the signal to noise ratio is improved from 42.95 dB to 81.73 dB.The overall noise level in the optical MEMS accelerometer is effectively suppressed.
基金supported by the National Natural Science Foundation of China(62375013).
文摘As the core component of inertial navigation systems, fiber optic gyroscope (FOG), with technical advantages such as low power consumption, long lifespan, fast startup speed, and flexible structural design, are widely used in aerospace, unmanned driving, and other fields. However, due to the temper-ature sensitivity of optical devices, the influence of environmen-tal temperature causes errors in FOG, thereby greatly limiting their output accuracy. This work researches on machine-learn-ing based temperature error compensation techniques for FOG. Specifically, it focuses on compensating for the bias errors gen-erated in the fiber ring due to the Shupe effect. This work pro-poses a composite model based on k-means clustering, sup-port vector regression, and particle swarm optimization algo-rithms. And it significantly reduced redundancy within the sam-ples by adopting the interval sequence sample. Moreover, met-rics such as root mean square error (RMSE), mean absolute error (MAE), bias stability, and Allan variance, are selected to evaluate the model’s performance and compensation effective-ness. This work effectively enhances the consistency between data and models across different temperature ranges and tem-perature gradients, improving the bias stability of the FOG from 0.022 °/h to 0.006 °/h. Compared to the existing methods utiliz-ing a single machine learning model, the proposed method increases the bias stability of the compensated FOG from 57.11% to 71.98%, and enhances the suppression of rate ramp noise coefficient from 2.29% to 14.83%. This work improves the accuracy of FOG after compensation, providing theoretical guid-ance and technical references for sensors error compensation work in other fields.
基金Project(52476095)supported by the National Natural Science Foundation of ChinaProject(kq2506013)supported by Changsha Outstanding Innovative Youth Training Program,China。
文摘The nanofluid-based direct absorption solar collector(NDASC)ensures that solar radiation passing through the tube wall is directly absorbed by the nanofluid,reducing thermal resistance in the energy transfer process.However,further exploration is required to suppress the outward thermal losses from the nanofluid at high temperatures.Herein,this paper proposes a novel NDASC in which the outer surface of the collector tube is covered with functional coatings and a three-dimensional computational fluid dynamics model is established to study the energy flow distributions on the collector within the temperature range of 400-600 K.When the nanofluid’s absorption coefficient reaches 80 m^(-1),the NDASC shows the optimal thermal performance,and the NDASC with local Sn-In_(2)O_(3) coating achieves a 7.8% improvement in thermal efficiency at 400 K compared to the original NDASC.Furthermore,hybrid coatings with Sn In_(2)O_(3)/WTi-Al_(2)O_(3) are explored,and the optimal coverage angles are determined.The NDASC with such coatings shows a 10.22%-17.9% increase in thermal efficiency compared to the original NDASC and a 7.6%-19.5% increase compared to the traditional surface-type solar collectors,demonstrating the effectiveness of the proposed energy flow control strategy for DASCs.
基金Fundamental Research Funds for the Central Universities(YWF-23-L-1225)National Natural Science Foundation of China(62201025)Chinese Aeronautical Establishment(2022Z037051001)。
文摘Vibration-induced bias deviation,which is generated by intensity fluctuations and additional phase differences,is one of the vital errors for fiber optic gyroscopes(FOGs)operating in vibration environment and has severely restricted the applications of high-precision FOGs.The conventional methods for suppressing vibration-induced errors mostly concentrate on reinforcing the mechanical structure and optical path as well as the compensation under some specific operation parameters,which have very limited effects for high-precision FOGs maintaining performances under vibration.In this work,a technique of suppressing the vibration-induced bias deviation through removing the part related to the varying gain from the rotation-rate output is put forward.Particularly,the loop gain is extracted out by adding a gain-monitoring wave.By demodulating the loop gain and the rotation rate simultaneously under distinct frequencies and investigating their quantitative relationship,the vibrationinduced bias error is compensated without limiting the operating parameters or environments,like the applied modulation depth.The experimental results show that the proposed method has achieved the reduction of bias error from about 0.149°/h to0.014°/h during the random vibration with frequencies from20 Hz to 2000 Hz.This technique provides a feasible route for enhancing the performances of high-precision FOGs heading towards high environmental adaptability.
基金The Deanship of Scientific Research(DSR)at King Abdulaziz University(KAU),Jeddah,Saudi Arabia,has funded this project under Grant No.(KEP-PhD:72-130-1443).
文摘The Underwater Communication Link(UCL)is a crucial component of Underwater Wireless Optical Communication(UWOC)systems,requiring optimised design to mitigate the high power attenuation inherent in seawater.To ensure the reliability of an optimal UCL design,it is essential to account for the three primary scattering regimes:forward scattering(FSC),backward scattering(BSC),and isotropic scattering(ISC)in seawater channels.This study introduces a new photon-tracking model based on a discrete equation,facilitating Monte Carlo Simulation(MCS)to evaluate how different scattering regimes influence received photon distribution.Three distinct Scattering Regime Contribution Weight(SRCW)probability sets were employed,each representing different UCL operational configurations dominated by specific scattering regimes.The proposed modeling approach enables a comprehensive assessment of the temporal characteristics of received optical pulses,channel loss,and time spread-ultimately defining the optimal UCL design parameters.The key findings of this study include:(1)Enhancing the FSC regime dominance leads to a quasi-light waveguide effect over link spans and small Fields of View(FOV)<25°,significantly improving channel performance in Harbor seawater compared to Coastal seawater.(2)A well-designed UCL with a small FOV(<25°)can minimise channel loss and time spread,ensuring high capacity and efficient performance in both Coastal and Harbor seawaters.(3)When BSC and ISC contributions exceed FSC dominance,the received optical pulse undergoes significant temporal broadening,particularly for larger FOV angles(>25°)and extended link spans.(4)The developed novel MCS-based discrete equation provides a simple yet robust model for simulating photon propagation in both homogeneous and inhomogeneous underwater channels.These insights contribute to developing more efficient and reliable UCL designs with military standards by enhancing UWOC system performance over a longer linkspan for a given limited optical power across various underwater environments.