By the theory of periodic parabolic operators, Shauder estimates and bifurcation, the existence of positive periodic solutions for periodic prey-predator model with saturation is discussed. The necessary and sufficien...By the theory of periodic parabolic operators, Shauder estimates and bifurcation, the existence of positive periodic solutions for periodic prey-predator model with saturation is discussed. The necessary and sufficient conditions to coexistence of periodic system are obtained.展开更多
In this paper, we prove the existence and uniqueness of positive periodic solutions for first-order functional differential equation y'(t) = α(t)y(t) + f(t, y(t -τ-(t))) + g(t)by using two fixed poi...In this paper, we prove the existence and uniqueness of positive periodic solutions for first-order functional differential equation y'(t) = α(t)y(t) + f(t, y(t -τ-(t))) + g(t)by using two fixed point theorems of general α-concave operators and homogeneous operators in ordered Banach spaces.展开更多
基金Supported by the Science Foundation of Hangzhou Dianzi University(KYF091504021)Supported by the Science Foundation of China Jiliang University(XZ0442)
文摘By the theory of periodic parabolic operators, Shauder estimates and bifurcation, the existence of positive periodic solutions for periodic prey-predator model with saturation is discussed. The necessary and sufficient conditions to coexistence of periodic system are obtained.
基金Supported by the Youth Science Foundation of China(l1201272) Supported by the Youth Science Foundatioa of Shanxi Province(2010021002-1)
文摘In this paper, we prove the existence and uniqueness of positive periodic solutions for first-order functional differential equation y'(t) = α(t)y(t) + f(t, y(t -τ-(t))) + g(t)by using two fixed point theorems of general α-concave operators and homogeneous operators in ordered Banach spaces.