One of the most important characters of blasting,a basic step of surface mining,is rock fragmentation because it directly effects on the costs of drilling and economics of the subsequent operations of loading,hauling ...One of the most important characters of blasting,a basic step of surface mining,is rock fragmentation because it directly effects on the costs of drilling and economics of the subsequent operations of loading,hauling and crushing in mines.Adaptive neuro-fuzzy inference system(ANFIS)and radial basis function(RBF)show potentials for modeling the behavior of complex nonlinear processes such as those involved in fragmentation due to blasting of rocks.We developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80%passing size(K_(80))of Golgohar iron mine of Sirjan.Iran.Comparing the results of ANFIS and RBF models shows that although the statistical parameters RBF model is acceptable but ANFIS proposed model is superior and also simpler because ANFIS model is constructed using only two input parameters while seven input parameters used for construction of RBF model.展开更多
The mechanism and the design parameters of blasting with air-decking are studied. The theory of detonation waves is used to investigate the processes of the one-dimensional plane detonation wave within a borehole. The...The mechanism and the design parameters of blasting with air-decking are studied. The theory of detonation waves is used to investigate the processes of the one-dimensional plane detonation wave within a borehole. The interac- tion of the rarefaction wave with an interface and reflection on a rigid wall is also analyzed. The same courses of the shock wave are also investigated. This decides the distribution of the pressure of the explosion products changing with time along the borehole. Based on the above theoretical analysis, two conditions should be met for a reasonable range of values of the air-decking ratio in blasting rock. First, the rarefaction wave from the contact interface between detonation products and air reaches the bottom earlier than that of the reflected shock wave from the end of the stemming. Second, the reflected shock wave reaches the contact interface between the detonation products and air earlier than that of the reflected rarefaction wave from the bottom of the borehole. Finally, the reasonable value of the air-decking ratio must be decided theoretically in air-decking blasting. For different explosives, the reasonable range of air-decking ratio varies from 0.15 to 0.4. This result is well consistent with what was obtained by previous researchers.展开更多
Accurately predicting the powder factor during blasting is essential for sustainable production planning in low-grade mines.This research presents a method for predicting powder factor based on the heterogeneity of ro...Accurately predicting the powder factor during blasting is essential for sustainable production planning in low-grade mines.This research presents a method for predicting powder factor based on the heterogeneity of rock mass rating(RMR).Considering a low-grade metal mine as an example,this study exploited geostatistical methods to obtain independent RMR for each block unit.A three-dimensional spatial distribution model for the powder factor was developed on the basis of the relationships between the RMR and the powder factor.Subsequently,models for blasting cost and mining value were built and employed to optimize the open-pit limit.The multi-variable model based on the RMR performed well in predicting the powder factor,achieving a correlation coefficient of 0.88(root mean square error of 4.3)and considerably outperforming the uniaxial compressive strength model.After model optimization,the mean size and standard deviation of the fragments in the blast pile decreased by 8.5%and 35.1%,respectively,whereas the boulder yield and its standard deviation decreased by 33.3%and 58.8%,respectively.Additionally,optimizing the open-pit limit using this method reduced the amount of rock,increased the amount of ore,and lowered blasting costs,thereby enhancing the economic efficiency of the mine.This study provides valuable insights for blasting design and mining decisions,demonstrating the advantages and potential applications of powder factor prediction based on the heterogeneity of rock mass quality.展开更多
基金financially supported by the Special Fund of Islamic Azad University,Malayer Branch(No.2293)
文摘One of the most important characters of blasting,a basic step of surface mining,is rock fragmentation because it directly effects on the costs of drilling and economics of the subsequent operations of loading,hauling and crushing in mines.Adaptive neuro-fuzzy inference system(ANFIS)and radial basis function(RBF)show potentials for modeling the behavior of complex nonlinear processes such as those involved in fragmentation due to blasting of rocks.We developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80%passing size(K_(80))of Golgohar iron mine of Sirjan.Iran.Comparing the results of ANFIS and RBF models shows that although the statistical parameters RBF model is acceptable but ANFIS proposed model is superior and also simpler because ANFIS model is constructed using only two input parameters while seven input parameters used for construction of RBF model.
文摘The mechanism and the design parameters of blasting with air-decking are studied. The theory of detonation waves is used to investigate the processes of the one-dimensional plane detonation wave within a borehole. The interac- tion of the rarefaction wave with an interface and reflection on a rigid wall is also analyzed. The same courses of the shock wave are also investigated. This decides the distribution of the pressure of the explosion products changing with time along the borehole. Based on the above theoretical analysis, two conditions should be met for a reasonable range of values of the air-decking ratio in blasting rock. First, the rarefaction wave from the contact interface between detonation products and air reaches the bottom earlier than that of the reflected shock wave from the end of the stemming. Second, the reflected shock wave reaches the contact interface between the detonation products and air earlier than that of the reflected rarefaction wave from the bottom of the borehole. Finally, the reasonable value of the air-decking ratio must be decided theoretically in air-decking blasting. For different explosives, the reasonable range of air-decking ratio varies from 0.15 to 0.4. This result is well consistent with what was obtained by previous researchers.
基金supported by the National Key Research and Development Program of China(No.2022YFC2903902)the National Natural Science Foundation of China(Nos.52204080and 52174070)the Fundamental Research Funds for the Central Universities of China(No.2023GFYD17)。
文摘Accurately predicting the powder factor during blasting is essential for sustainable production planning in low-grade mines.This research presents a method for predicting powder factor based on the heterogeneity of rock mass rating(RMR).Considering a low-grade metal mine as an example,this study exploited geostatistical methods to obtain independent RMR for each block unit.A three-dimensional spatial distribution model for the powder factor was developed on the basis of the relationships between the RMR and the powder factor.Subsequently,models for blasting cost and mining value were built and employed to optimize the open-pit limit.The multi-variable model based on the RMR performed well in predicting the powder factor,achieving a correlation coefficient of 0.88(root mean square error of 4.3)and considerably outperforming the uniaxial compressive strength model.After model optimization,the mean size and standard deviation of the fragments in the blast pile decreased by 8.5%and 35.1%,respectively,whereas the boulder yield and its standard deviation decreased by 33.3%and 58.8%,respectively.Additionally,optimizing the open-pit limit using this method reduced the amount of rock,increased the amount of ore,and lowered blasting costs,thereby enhancing the economic efficiency of the mine.This study provides valuable insights for blasting design and mining decisions,demonstrating the advantages and potential applications of powder factor prediction based on the heterogeneity of rock mass quality.