To fully leverage the advantages of mechanization and informatization in tunnel boring machine(TBM)operations,the authors aim to promote the advancement of tunnel construction technology toward intelligent development...To fully leverage the advantages of mechanization and informatization in tunnel boring machine(TBM)operations,the authors aim to promote the advancement of tunnel construction technology toward intelligent development.This involved exploring the deep integration of next-generation artificial intelligence technologies,such as sensing technology,automatic control technology,big data technology,deep learning,and machine vision,with key operational processes,including TBM excavation,direction adjustment,step changes,inverted arch block assembly,material transportation,and operation status assurance.The results of this integration are summarized as follows.(1)TBM key excavation parameter prediction algorithm was developed with an accuracy rate exceeding 90%.The TBM intelligent step-change control algorithm,based on machine vision,achieved an image segmentation accuracy rate of 95%and gripper shoe positioning error of±5 mm.(2)An automatic positioning system for inverted arch blocks was developed,enabling real-time perception of the spatial position and deviation during the assembly process.The system maintains an elevation positioning deviation within±3 mm and a horizontal positioning deviation within±10 mm,reducing the number of surveyors in each work team.(3)A TBM intelligent rail transportation system that achieves real-time human-machine positioning,automatic switch opening and closing,automatic obstacle avoidance,intelligent transportation planning,and integrated scheduling and command was designed.Each locomotive formation reduces one shunter and improves comprehensive transportation efficiency by more than 20%.(4)Intelligent analysis and prediction algorithms were developed to monitor and predict the trends of the hydraulic and gear oil parameters in real time,enhancing the proactive maintenance and system reliability.展开更多
A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a n...A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a new mitigation method is urgently expected to be explored.This study proposed a novel asymptotic linear method(ALM)for micro pressure wave(MPW)mitigation to achieve a constant gradient of initial c ompression waves(ICWs),via a study with various open ratios on hoods.The properties of ICWs and MPWs under various open ratios of hoods were analyzed.The results show that as the open ratio increases,the MPW amplitude at the tunnel exit initially decreases before rising.At the open ratio of 2.28%,the slope of the ICW curve is linearly coincident with a supposed straight line in the ALM,which further reduces the MPW amplitude by 26.9%at 20 m and 20.0%at 50 m from the exit,as compared to the unvented hood.Therefore,the proposed method effectively mitigates MPW and quickly determines the upper limit of alleviation for the MPW amplitude at a fixed train-tunnel operation condition.All achievements provide a ne w potential measure for the adaptive design of tunnel hoods.展开更多
为解决传统网络路由转发体系缺乏灵活性的问题,提出了OpenTDR开放式架构方案。该方案通过集成二维路由和软件定义网络(software defined network,SDN)技术,可在不同时间段实施不同的流量均衡和节能机制。实验结果表明,由一维升级至二维...为解决传统网络路由转发体系缺乏灵活性的问题,提出了OpenTDR开放式架构方案。该方案通过集成二维路由和软件定义网络(software defined network,SDN)技术,可在不同时间段实施不同的流量均衡和节能机制。实验结果表明,由一维升级至二维的路由转发方式,配合SDN的集中式网络规划,可明显增强网络(尤其是广域网)的流量调度与服务质量控制的灵活性,达到流量均衡与节约能耗的目的。另外,二维路由机制兼容传统路由,为基于传统网络的SDN改造提供了可行的过渡方案。展开更多
文摘To fully leverage the advantages of mechanization and informatization in tunnel boring machine(TBM)operations,the authors aim to promote the advancement of tunnel construction technology toward intelligent development.This involved exploring the deep integration of next-generation artificial intelligence technologies,such as sensing technology,automatic control technology,big data technology,deep learning,and machine vision,with key operational processes,including TBM excavation,direction adjustment,step changes,inverted arch block assembly,material transportation,and operation status assurance.The results of this integration are summarized as follows.(1)TBM key excavation parameter prediction algorithm was developed with an accuracy rate exceeding 90%.The TBM intelligent step-change control algorithm,based on machine vision,achieved an image segmentation accuracy rate of 95%and gripper shoe positioning error of±5 mm.(2)An automatic positioning system for inverted arch blocks was developed,enabling real-time perception of the spatial position and deviation during the assembly process.The system maintains an elevation positioning deviation within±3 mm and a horizontal positioning deviation within±10 mm,reducing the number of surveyors in each work team.(3)A TBM intelligent rail transportation system that achieves real-time human-machine positioning,automatic switch opening and closing,automatic obstacle avoidance,intelligent transportation planning,and integrated scheduling and command was designed.Each locomotive formation reduces one shunter and improves comprehensive transportation efficiency by more than 20%.(4)Intelligent analysis and prediction algorithms were developed to monitor and predict the trends of the hydraulic and gear oil parameters in real time,enhancing the proactive maintenance and system reliability.
基金Project(24A0006)supported by the Key Project of Scientific Research Fund of Hunan Provincial Department of Education,ChinaProject(2024JJ5430)supported by the Natural Science Foundation of Hunan Province,ChinaProjects(2024JK2045,2023RC3061)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘A high-speed train travelling from the open air into a narrow tunnel will cause the“sonic boom”at tunnel exit.When the maglev train’s speed reaches 600 km/h,the train-tunnel aerodynamic effect is intensified,so a new mitigation method is urgently expected to be explored.This study proposed a novel asymptotic linear method(ALM)for micro pressure wave(MPW)mitigation to achieve a constant gradient of initial c ompression waves(ICWs),via a study with various open ratios on hoods.The properties of ICWs and MPWs under various open ratios of hoods were analyzed.The results show that as the open ratio increases,the MPW amplitude at the tunnel exit initially decreases before rising.At the open ratio of 2.28%,the slope of the ICW curve is linearly coincident with a supposed straight line in the ALM,which further reduces the MPW amplitude by 26.9%at 20 m and 20.0%at 50 m from the exit,as compared to the unvented hood.Therefore,the proposed method effectively mitigates MPW and quickly determines the upper limit of alleviation for the MPW amplitude at a fixed train-tunnel operation condition.All achievements provide a ne w potential measure for the adaptive design of tunnel hoods.
文摘为解决传统网络路由转发体系缺乏灵活性的问题,提出了OpenTDR开放式架构方案。该方案通过集成二维路由和软件定义网络(software defined network,SDN)技术,可在不同时间段实施不同的流量均衡和节能机制。实验结果表明,由一维升级至二维的路由转发方式,配合SDN的集中式网络规划,可明显增强网络(尤其是广域网)的流量调度与服务质量控制的灵活性,达到流量均衡与节约能耗的目的。另外,二维路由机制兼容传统路由,为基于传统网络的SDN改造提供了可行的过渡方案。