期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
煤矿井下动态环境基于WiFi的OSELM算法研究 被引量:1
1
作者 窦占树 崔丽珍 +1 位作者 洪金祥 赫佳星 《传感器与微系统》 CSCD 北大核心 2023年第7期48-51,56,共5页
针对煤矿井下环境高动态变化,导致WiFi指纹匹配定位模型精度降低的问题,提出在线顺序极限学习机(OSELM)的井下定位算法,利用新增接收信号强度指示(RSSI)数据实现对模型的在线实时更新,同时赋予新增数据时效性权重来改进OSELM算法,在保... 针对煤矿井下环境高动态变化,导致WiFi指纹匹配定位模型精度降低的问题,提出在线顺序极限学习机(OSELM)的井下定位算法,利用新增接收信号强度指示(RSSI)数据实现对模型的在线实时更新,同时赋予新增数据时效性权重来改进OSELM算法,在保证定位精度的前提下减少数据采集和模型训练工作量。实验结果表明:与传统的批量学习方法相比,利用OSELM在线学习能力可以改善由于井下环境高动态变化导致定位模型精度降低的问题,并且改进的OSELM算法能更有效提升模型定位精度。 展开更多
关键词 位置指纹定位 在线顺序极限学习机定位模型 高动态井下环境 在线增量学习
在线阅读 下载PDF
基于CPA-OSELM的热轧带钢厚度在线预测
2
作者 肖思竹 张飞 +2 位作者 黄学忠 肖雄 易忠荣 《科学技术与工程》 北大核心 2022年第22期9686-9694,共9页
为解决自动厚度控制(automatic gauge control, AGC)系统反馈滞后、耦合强、厚度偏差大等问题,提出了一种基于食肉植物算法(carnivorous plant algorithm, CPA)的在线顺序极限学习机(online sequential extreme learning machine, OSELM... 为解决自动厚度控制(automatic gauge control, AGC)系统反馈滞后、耦合强、厚度偏差大等问题,提出了一种基于食肉植物算法(carnivorous plant algorithm, CPA)的在线顺序极限学习机(online sequential extreme learning machine, OSELM)预测算法。首先,基于从现场采集的相关数据,建立了OSELM在线厚度预测模型。然后为了提高模型的准确性及稳定性,采用CPA方法优化OSELM的权重和偏置。在此基础上,运用自学习方法进一步提高模型的预测精度。最后,通过实验验证基于CPA-OSELM预测模型的有效性。实验结果表明:基于CPA-OSELM的方法能够对不同规格带钢的出口厚度进行高精度在线预测,预测结果可用于提升AGC模型的控制精度,为提升带钢产品质量奠定基础。 展开更多
关键词 热轧带钢 在线预测 在线顺序极限学习机(online sequential extreme learning machine oselm) 食肉植物算法(carnivorous plant algorithm CPA) 自学习
在线阅读 下载PDF
基于时空建模的锂离子电池温度预测 被引量:1
3
作者 吕洲 何波 宋连 《电池》 CAS 北大核心 2024年第4期497-502,共6页
锂离子电池温度具有时空耦合、强非线性和时变特性,建立准确的预测模型有困难。提出一种基于时空建模的锂离子电池温度分布预测方法。利用正交局部保持投影(OLPP)将电池温度分离为正交空间基函数和时间系数。以电流、电压为输入,时间系... 锂离子电池温度具有时空耦合、强非线性和时变特性,建立准确的预测模型有困难。提出一种基于时空建模的锂离子电池温度分布预测方法。利用正交局部保持投影(OLPP)将电池温度分离为正交空间基函数和时间系数。以电流、电压为输入,时间系数为输出,建立基于带遗忘因子的在线顺序超限学习机(FFOS-ELM)的低阶时序模型。通过时空合成,重构出原始的温度分布。三元软包装锂离子电池温度预测结果表明,与基于拉普拉斯特征映射和在线顺序极限学习机的在线时空建模方法(LE-OS-ELM)相比,所提方法的预测精度更高,在恒流放电和城市动力测驾循环(UDDS)工况下,时间标准绝对误差分别在(0.030,0.155)和(0.095,0.110)区间内,均方根误差分别为0.097 2及0.108 4。 展开更多
关键词 锂离子电池温度 在线时空建模 正交局部保持投影(OLPP) 带遗忘因子的在线顺序超限学习机(FFOS-ELM)
在线阅读 下载PDF
集成机理与数据的复杂模锻过程在线建模方法 被引量:2
4
作者 吕文兵 陆新江 +2 位作者 黄明辉 雷杰 邹玮 《中国机械工程》 EI CAS CSCD 北大核心 2015年第9期1227-1232,共6页
大型航空锻件高精度成形成性依赖于精确的锻造过程模型,然而不规则的锻件形状、复杂的微观流变过程、强非线性与时变的负载力使得高精度的锻造过程模型难以获得。为此,在结合解析建模和数据建模优点的基础上,提出了集成机理与数据的复... 大型航空锻件高精度成形成性依赖于精确的锻造过程模型,然而不规则的锻件形状、复杂的微观流变过程、强非线性与时变的负载力使得高精度的锻造过程模型难以获得。为此,在结合解析建模和数据建模优点的基础上,提出了集成机理与数据的复杂模锻过程在线建模方法。应用物理与过程知识推导了锻造过程的解析模型,在此基础上提出使用在线极限学习机方法构建由于泄漏、不确定性、干扰等引起的偏差模型,实现了锻造过程模型的实时进化,从而满足强非线性与时变性的锻造过程要求。实验结果表明,新方法能有效地建立复杂锻造过程模型,且比现有的方法有更好的建模精度。 展开更多
关键词 大型锻件 锻造过程 解析模型 在线极限学习机
在线阅读 下载PDF
基于M-estimator与可变遗忘因子的在线贯序超限学习机 被引量:5
5
作者 郭威 徐涛 +1 位作者 于建江 汤克明 《电子与信息学报》 EI CSCD 北大核心 2018年第6期1360-1367,共8页
该文针对时变离群值环境下的在线学习问题,提出一种基于M-estimator与可变遗忘因子的在线贯序超限学习机算法(VFF-M-OSELM)。VFF-M-OSELM以在线贯序超限学习机模型为基础,通过引入一种更加鲁棒的M-estimator代价函数来替代传统的最小二... 该文针对时变离群值环境下的在线学习问题,提出一种基于M-estimator与可变遗忘因子的在线贯序超限学习机算法(VFF-M-OSELM)。VFF-M-OSELM以在线贯序超限学习机模型为基础,通过引入一种更加鲁棒的M-estimator代价函数来替代传统的最小二乘代价函数,以提高模型对于离群值的在线处理能力和鲁棒性。同时VFF-M-OSELM通过融合使用一种新的可变遗忘因子方法进一步增强了其在时变环境下的动态跟踪能力和自适应性。仿真实例验证了所提算法的有效性。 展开更多
关键词 在线贯序超限学习机 M-估计 可变遗忘因子 鲁棒性 自适应性
在线阅读 下载PDF
基于粒子群优化在线顺序极限学习机动态环境室内定位算法 被引量:2
6
作者 韩承毅 苏胜君 +2 位作者 施伟斌 乐燕芬 李瑞祥 《数据采集与处理》 CSCD 北大核心 2022年第6期1345-1352,共8页
动态环境室内定位容易受到人员随机行动、障碍物等环境的干扰,信号强度的时变性、数据采集的不稳定性对定位算法产生很大的影响。针对该问题,本文提出了一种基于粒子群优化在线顺序极限学习机算法(Particle swarm optimization online s... 动态环境室内定位容易受到人员随机行动、障碍物等环境的干扰,信号强度的时变性、数据采集的不稳定性对定位算法产生很大的影响。针对该问题,本文提出了一种基于粒子群优化在线顺序极限学习机算法(Particle swarm optimization online sequential extreme learning machine,PSO⁃OS⁃ELM)。该算法继承了在线顺序极限学习机(Online sequential extreme learning machine,OS⁃ELM)算法的数据采集成本低、适应环境变化快、收敛速度较快且定位精度较高等特性,同时又利用粒子群优化(Particle swarm optimization,PSO)解决OS⁃ELM算法中奇异值问题和鲁棒性问题。在3种不同环境下采集数据,将PSO⁃OS⁃ELM算法、OS⁃ELM算法和WKNN算法进行实验对比。实验结果表明:在动态变化的室内环境中,PSO⁃OS⁃ELM算法定位误差较小且鲁棒性增强,优于其他算法;平均定位误差相较于其他算法减少了约15%;算法耗时性相较于传统定位算法加权K近邻算法(Weighted K⁃nearest neighbor,WKNN)算法减少了约55%。 展开更多
关键词 粒子群优化 在线顺序极限学习机 接收信号强度 动态环境 室内定位
在线阅读 下载PDF
不平衡数据下船舶主机在线故障诊断研究 被引量:6
7
作者 王泷德 曹辉 魏来 《中国舰船研究》 CSCD 北大核心 2023年第5期269-275,共7页
[目的]针对传统船舶主机的故障诊断模型难以采用实时数据及时更新,且船舶主机还存在监测点多但故障样本少的问题,提出一种能够处理不平衡数据并可以在线更新模型的故障诊断方法。[方法]首先,采用主成分分析法(PCA)对监测样本进行降维和... [目的]针对传统船舶主机的故障诊断模型难以采用实时数据及时更新,且船舶主机还存在监测点多但故障样本少的问题,提出一种能够处理不平衡数据并可以在线更新模型的故障诊断方法。[方法]首先,采用主成分分析法(PCA)对监测样本进行降维和特征提取,降低训练模型的复杂度;然后,通过SMOTETomek构造故障样本以平衡训练集;接着,针对诊断模型难以实时更新的问题,引入结合正则化方法且具备在线更新功能的在线贯序极限学习机(OSELM)模型;最后,以主机燃油系统为例验证OSRELM模型的可行性,并采用不平衡船舶主机数据进行消融实验以验证整体模型的有效性。[结果]结果显示,所提方法在原始模型的基础上可使诊断精度提升29.73%。[结论]研究表明所提方法较其他同类方法具有更高的诊断精度,波动幅度较小,具有较好的稳定性;且在样本不平衡的情况下,对于故障类样本仍具备较强的识别能力,适用于船舶主机故障诊断方面的研究。 展开更多
关键词 故障诊断 样本不平衡 在线学习 在线贯序极限学习机
在线阅读 下载PDF
基于博弈论准确性和差异性兼优的选择性集成建模方法及其应用 被引量:4
8
作者 陈双叶 高建琛 +1 位作者 符寒光 赵荣 《北京工业大学学报》 EI CAS CSCD 北大核心 2021年第1期32-39,共8页
集成学习相较于单模型具有更好的预测精度和泛化能力,被广泛应用于工业过程的质量预测.基学习器之间的多样性和基学习器的准确性对集成的泛化能力影响极大.为了进一步提高集成模型的泛化能力,提出一种同时考虑准确性和差异性的选择性集... 集成学习相较于单模型具有更好的预测精度和泛化能力,被广泛应用于工业过程的质量预测.基学习器之间的多样性和基学习器的准确性对集成的泛化能力影响极大.为了进一步提高集成模型的泛化能力,提出一种同时考虑准确性和差异性的选择性集成建模方法.以在线极限学习机作为基学习器,将基学习器的准确性和基学习器对集成模型多样性的贡献率作为博弈双方,利用博弈论原理求解得出使集成模型准确性和多样性都达到最优的选择方案,使集成模型的准确性和多样性兼优;模型预测完成后,综合当前误差和历史记录误差对基学习器的权重进行在线更新,实现在线测量阶段对建模对象特性的动态自适应.最后,使用公开数据集和实际工业数据验证了所提算法的合理性和有效性. 展开更多
关键词 软测量模型 选择性集成 概念漂移 博弈论 在线极限学习机 自适应学习
在线阅读 下载PDF
基于LLE-OS-ELM的锂离子电池热过程在线建模 被引量:1
9
作者 吕洲 何波 李志德 《电池》 CAS 北大核心 2022年第6期637-641,共5页
锂离子电池的热过程具有机理复杂、时变及强非线性的特征,难以建立准确的预测模型。提出一种基于局部线性嵌入(LLE)方法和在线顺序超限学习机(OS-ELM)的在线时空建模方法。利用LLE,从电池时空温度数据分离出空间基函数和时间系数;然后,... 锂离子电池的热过程具有机理复杂、时变及强非线性的特征,难以建立准确的预测模型。提出一种基于局部线性嵌入(LLE)方法和在线顺序超限学习机(OS-ELM)的在线时空建模方法。利用LLE,从电池时空温度数据分离出空间基函数和时间系数;然后,基于OS-ELM建立输入信号与时间系数的在线时序模型;最后,通过时空综合,重构电池温度分布。以三元正极材料软包装锂离子电池为例,验证所提出方法的有效性。与基于卡洛南-洛伊(KL)的在线时空建模方法(KL-OS-ELM)及二维电-热建模方法(Th2Sim)相比,该方法具有较高的预测能力,时间标准绝对误差在区间[0.0524,0.0764]内,均方根误差达到0.0752。 展开更多
关键词 锂离子电池热过程 在线时空建模 局部线性嵌入(LLE)方法 在线顺序超限学习机(OS-ELM)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部