期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
基于改进MKELM的红外空间锥体目标识别
1
作者 王彩云 常韵 +3 位作者 李晓飞 王佳宁 吴钇达 张慧雯 《系统工程与电子技术》 EI CSCD 北大核心 2024年第10期3257-3264,共8页
针对远距离探测时仅能获取目标的红外辐射强度序列、样本量有限、信噪比低而导致目标识别困难的问题,提出一种基于改进多核极限学习机(multiple kernel extreme learning machine,MKELM)的红外空间锥体目标识别方法。首先对红外辐射强... 针对远距离探测时仅能获取目标的红外辐射强度序列、样本量有限、信噪比低而导致目标识别困难的问题,提出一种基于改进多核极限学习机(multiple kernel extreme learning machine,MKELM)的红外空间锥体目标识别方法。首先对红外辐射强度序列进行变分模态分解(variational mode decomposition,VMD)并重构,然后对重构序列进行时域特征提取,最后采用鲸鱼优化算法(whale optimization algorithm,WOA)优化MKELM的参数组合,在仿真生成的空间锥体目标红外辐射强度序列数据集上进行目标分类识别实验。实验结果验证了所提算法的有效性,同时表明所提方法具有较好的识别准确性和鲁棒性。 展开更多
关键词 红外辐射强度序列 空间目标识别 变分模态分解 鲸鱼优化算法 多核极限学习机
在线阅读 下载PDF
基于Storm的在线序列极限学习机的气象预测模型 被引量:9
2
作者 欧阳建权 周勇 唐欢容 《计算机研究与发展》 EI CSCD 北大核心 2017年第8期1736-1743,共8页
为提高气象预测精度,实时应对频发的局域气象灾害,拥有更高的处理海量数据的效率,提出了一种基于Storm的在线序列的极限学习机气象预测模型.该模型首先初始化多个在线极限学习机,当新批次的数据不断到达时,模型能够在训练结果的基础上... 为提高气象预测精度,实时应对频发的局域气象灾害,拥有更高的处理海量数据的效率,提出了一种基于Storm的在线序列的极限学习机气象预测模型.该模型首先初始化多个在线极限学习机,当新批次的数据不断到达时,模型能够在训练结果的基础上继续学习新样本,并引入随机梯度下降法和误差权值调整方法,对新的预测结果进行误差反馈,实时更新误差权值参数,以提高模型预测准确率.另外,采用Storm流式处理框架对提出的算法模型进行并行化改进,以提高处理海量高维数据的能力.实验结果表明:该模型与基于Hadoop的并行极限学习机算法(parallel extreme learning machine,PELM)相比,具有更高的预测精度和优异的并行性能. 展开更多
关键词 STORM 极限学习机 气象预测 在线序列 机器学习
在线阅读 下载PDF
一种基于积累一致性测量的在线状态预测算法 被引量:6
3
作者 张伟 许爱强 高明哲 《上海交通大学学报》 EI CAS CSCD 北大核心 2017年第11期1391-1398,共8页
针对核极限学习机(Extreme Learning Machine with Kernel,KELM)在线应用过程中,核矩阵膨胀,导致算法复杂性不断上升,且难以跟踪系统时变特征的问题,以滑动时间窗为基本建模策略,提出了一种新的KELM在线稀疏学习算法.在前向与后向稀疏... 针对核极限学习机(Extreme Learning Machine with Kernel,KELM)在线应用过程中,核矩阵膨胀,导致算法复杂性不断上升,且难以跟踪系统时变特征的问题,以滑动时间窗为基本建模策略,提出了一种新的KELM在线稀疏学习算法.在前向与后向稀疏化过程中,基于提出的构造与修剪策略,通过在线最小化字典的积累一致性,可选择一组具有预定规模的关键节点.在增样学习与减样学习过程中,基于节点选择结果,利用矩阵的初等变换与分块矩阵求逆公式,模型参数能被在线递推更新.提出的算法被用于混沌时间序列预测与音频放大器状态预测.实验结果表明:相比于4种流形的在线序贯ELM算法,提出的方法在花费相似的测试时间的条件下,能够显著提升预测精度,且具有较好的稳定性. 展开更多
关键词 状态预测 核方法 极限学习机 积累一致性 在线序贯学习
在线阅读 下载PDF
基于稀疏核增量超限学习机的机载设备在线状态预测 被引量:6
4
作者 张伟 许爱强 高明哲 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2017年第10期2089-2098,共10页
为实现对机载设备工作状态的在线状态预测,提出了一种稀疏核增量超限学习机(ELM)算法。针对核在线学习中核矩阵膨胀问题,基于瞬时信息测量提出了一个融合构造与修剪策略的两步稀疏化方法。通过在构造阶段最小化字典冗余,在修剪阶段最大... 为实现对机载设备工作状态的在线状态预测,提出了一种稀疏核增量超限学习机(ELM)算法。针对核在线学习中核矩阵膨胀问题,基于瞬时信息测量提出了一个融合构造与修剪策略的两步稀疏化方法。通过在构造阶段最小化字典冗余,在修剪阶段最大化字典元素的瞬时条件自信息量,选择一个具有固定记忆规模的稀疏字典。针对基于核的增量超限学习机核权重更新问题,提出改进的减样学习算法,其可以实现字典中任一个核函数删除后剩余核函数Gram矩阵的逆矩阵的前向递推更新。通过对某型飞机发动机的状态预测,在预测数据长度等于20的条件下,本文提出的算法将预测的整体平均误差率下降到2.18%,相比于3种流形的核超限学习机在线算法,预测精度分别提升了0.72%、0.14%和0.13%。 展开更多
关键词 状态预测 核在线学习 稀疏测量 超限学习机(ELM) 有效集
在线阅读 下载PDF
一种基于在线序贯极限学习机的大型舰船甲板态势预测方法 被引量:4
5
作者 刘锡祥 宋清 +2 位作者 司马健 黄永江 杨燕 《中国惯性技术学报》 EI CSCD 北大核心 2016年第2期269-274,共6页
在舰船摇荡运动无法有效抑制时,可利用惯性导航系统实时测量甲板运动,并利用甲板运动的当前以及历史数据对未来时刻的甲板运动进行预测,以提高舰载机的起降安全性。然而甲板摇荡运动作为风浪、潮汐等共同作用的产物,具有较强的非线性、... 在舰船摇荡运动无法有效抑制时,可利用惯性导航系统实时测量甲板运动,并利用甲板运动的当前以及历史数据对未来时刻的甲板运动进行预测,以提高舰载机的起降安全性。然而甲板摇荡运动作为风浪、潮汐等共同作用的产物,具有较强的非线性、随机性和时变性。针对上述特性,引入具有信息实时更新功能的在线序贯极限学习机(OS-ELM)方法对甲板运动态势进行预测。该方法通过实时更新参与模型解算的样本数据,具有计算量小、学习映射能力强的优点。针对OS-ELM中存在的隐含层节点个数选择,以及甲板态势预测中出现的样本个数、历史数据长度等参数选择问题,引入遗传算法(GA)进行寻优。基于模拟甲板摇荡数据的仿真表明,该预测方法可以实时跟踪甲板运动的实时性变化,并对甲板运动态势进行预测。 展开更多
关键词 甲板态势预测 在线序贯极限学习机 信息更新 遗传算法
在线阅读 下载PDF
基于稀疏化核方法的非线性动态系统在线辨识 被引量:4
6
作者 张伟 许爱强 平殿发 《系统工程与电子技术》 EI CSCD 北大核心 2017年第1期223-230,共8页
为了抑制辨识模型阶数的不断增长,适应系统的时变动态特征,以滑动时间窗为基本建模策略,提出了一种具有自适应正则化因子的核超限学习机(kernel extreme learning machine,KELM)在线辨识方法。通过构建新的目标函数,使得正则化因子可以... 为了抑制辨识模型阶数的不断增长,适应系统的时变动态特征,以滑动时间窗为基本建模策略,提出了一种具有自适应正则化因子的核超限学习机(kernel extreme learning machine,KELM)在线辨识方法。通过构建新的目标函数,使得正则化因子可以随着系统动态而改变,保证了模型在不同的非线性区域拥有不同的结构风险;通过构建统一的学习框架,在保证每一次训练迭代中学习过程稀疏化的同时,实现了核权重系数与正则化因子的同步更新。实验结果表明,提出的方法相比与其他基于KELM的在线序贯学习方法,在有无噪声的情况下,均可以有效提升辨识精度,并且具有更好的稳定性。 展开更多
关键词 非线性系统辨识 核方法 超限学习机 在线稀疏 正则化
在线阅读 下载PDF
基于改进极限学习机算法的行为识别 被引量:9
7
作者 周书仁 曹思思 蔡碧野 《计算机工程与科学》 CSCD 北大核心 2017年第9期1749-1757,共9页
重点研究了极限学习机ELM对行为识别检测的效果。针对在线学习和行为分类上存在计算复杂性和时间消耗大的问题,提出了一种新的行为识别学习算法(ELM-Cholesky)。该算法首先引入了基于Cholesky分解求ELM的方法,接着依据在线学习期间核函... 重点研究了极限学习机ELM对行为识别检测的效果。针对在线学习和行为分类上存在计算复杂性和时间消耗大的问题,提出了一种新的行为识别学习算法(ELM-Cholesky)。该算法首先引入了基于Cholesky分解求ELM的方法,接着依据在线学习期间核函数矩阵的更新特点,将分块矩阵Cholesky分解算法用于ELM的在线求解,使三角因子矩阵实现在线更新,从而得出一种新的ELM-Cholesky在线学习算法。新算法充分利用了历史训练数据,降低了计算的复杂性,提高了行为识别的准确率。最后,在基准数据库上采用该算法进行了大量实验,实验结果表明了这种在线学习算法的有效性。 展开更多
关键词 极限学习机 在线学习 CHOLESKY分解 核函数
在线阅读 下载PDF
在线序列ELM算法及其发展 被引量:11
8
作者 杨乐 张瑞 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期885-889,896,共6页
目的综述在线序列ELM算法及其改进,为相关研究者提供该研究方向的发展历史和最新结果。方法从在线序列ELM的基本思想与基本理论出发,通过分析总结其优点与不足,概括基于不同角度的在线序列ELM算法改进。结果对在线序列ELM算法及其发展... 目的综述在线序列ELM算法及其改进,为相关研究者提供该研究方向的发展历史和最新结果。方法从在线序列ELM的基本思想与基本理论出发,通过分析总结其优点与不足,概括基于不同角度的在线序列ELM算法改进。结果对在线序列ELM算法及其发展进行了全面系统的分析、归纳和总结。结论在线序列ELM算法的主要发展方向可聚焦于:如何建立新的可调整网络结构的在线序列ELM算法,以及如何提高算法稳定性两个方面。 展开更多
关键词 ELM算法 在线序列ELM算法 网络结构 算法稳定性
在线阅读 下载PDF
基于改进在线核极限学习机的蓄电池SOC预测 被引量:4
9
作者 孙玉坤 李曼曼 黄永红 《系统仿真学报》 CAS CSCD 北大核心 2018年第3期969-975,共7页
为对蓄电池荷电状态(SOC)进行准确、快速的在线预测,提出一种改进的在线核极限学习机方法(IO-KELM),以电池工作电压、电流和表面温度为输入量,电池SOC为输出量建立预测模型。IO-KELM采用Cholesky分解将核极限学习机(KELM)从离线模式扩... 为对蓄电池荷电状态(SOC)进行准确、快速的在线预测,提出一种改进的在线核极限学习机方法(IO-KELM),以电池工作电压、电流和表面温度为输入量,电池SOC为输出量建立预测模型。IO-KELM采用Cholesky分解将核极限学习机(KELM)从离线模式扩展到在线模式,使网络输出权值随新样本的逐次加入递推求解更新,以简单的四则运算替代复杂的矩阵求逆,提高了网络的泛化能力和在线学习效率。仿真实验表明,相比于KELM及直接在线建模的KELM算法(DO-KELM),IO-KELM具有更高的预测精度、更强的鲁棒性及更快的计算速度。 展开更多
关键词 蓄电池 荷电状态 核极限学习机 CHOLESKY分解 在线预测
在线阅读 下载PDF
基于自组合核的增量分类方法
10
作者 冯林 张晶 吴振宇 《系统工程与电子技术》 EI CSCD 北大核心 2016年第8期1958-1968,共11页
在线极端学习机(online sequential extreme learning machine,OSELM)模型在解决动态数据实时分类问题时,无需批量计算,仅保留前一时刻训练模型,根据当前时刻样本调整原有模型即可。然而,该增量方法在离线训练阶段随机指定隐层神经元使... 在线极端学习机(online sequential extreme learning machine,OSELM)模型在解决动态数据实时分类问题时,无需批量计算,仅保留前一时刻训练模型,根据当前时刻样本调整原有模型即可。然而,该增量方法在离线训练阶段随机指定隐层神经元使模型鲁棒性差,且求解过程难以拓展于核方法,降低了分类效果。针对上述问题,提出一种基于自组合核的在线极端学习机(self-compounding kernel online sequential extreme learning machine,SCK-OSELM)模型。首先,提出一种新的自组合核(self-compounding kernel,SCK)方法,构建样本不同核空间的非线性特征组合,该方法可被应用于其他监督核方法中。其次,以稀疏贝叶斯为理论基础将训练数据的先验分布作为模型权值引入,并利用超参调整权值后验分布,从而达到对当前时间点参数稀疏的目的。最后,将稀疏得到的参数并入下一时刻运算。对动态数据的实时分类实验表明,该方法是一种有效的增量学习算法。相比于OSELM,该方法在解决动态数据实时分类问题时获得更稳定、准确的分类效果。 展开更多
关键词 动态数据 在线极端学习机 自组合核 稀疏贝叶斯
在线阅读 下载PDF
极限学习机前沿进展与趋势 被引量:122
11
作者 徐睿 梁循 +2 位作者 齐金山 李志宇 张树森 《计算机学报》 EI CSCD 北大核心 2019年第7期1640-1670,共31页
极限学习机(Extreme Learning Machine,ELM)作为前馈神经网络学习中一种全新的训练框架,在行为识别、情感识别和故障诊断等方面被广泛应用,引起了各个领域的高度关注和深入研究.ELM最初是针对单隐层前馈神经网络的学习速度而提出的,之... 极限学习机(Extreme Learning Machine,ELM)作为前馈神经网络学习中一种全新的训练框架,在行为识别、情感识别和故障诊断等方面被广泛应用,引起了各个领域的高度关注和深入研究.ELM最初是针对单隐层前馈神经网络的学习速度而提出的,之后又被众多学者扩展到多隐层前馈神经网络中.该算法的核心思想是随机选取网络的输入权值和隐层偏置,在训练过程中保持不变,仅需要优化隐层神经元个数.网络的输出权值则是通过最小化平方损失函数,来求解Moore - Penrose广义逆运算得到最小范数最小二乘解.相比于其它传统的基于梯度的前馈神经网络学习算法,ELM具有实现简单,学习速度极快和人为干预较少等显著优势,已成为当前人工智能领域最热门的研究方向之一.ELM的学习理论表明,当隐层神经元的学习参数独立于训练样本随机生成,只要前馈神经网络的激活函数是非线性分段连续的,就可以逼近任意连续目标函数或分类任务中的任何复杂决策边界.近年来,随机神经元也逐步在越来越多的深度学习中使用,而ELM可以为其提供使用的理论基础.本文首先概述了ELM的发展历程,接着详细阐述了ELM的工作原理.然后对ELM理论和应用的最新研究进展进行了归纳总结,着重讨论并分析了自ELM提出以来的主要学习算法和模型,包括提出的原因、核心思想、求解方法、各自的优缺点以及相关问题.最后,针对当前的研究现状,指出了ELM存在的争议、问题和挑战,并对未来的研究方向和发展趋势进行了展望。 展开更多
关键词 极限学习机 网络结构 正则化 核学习 深度学习 在线学习 并行计算
在线阅读 下载PDF
基于极限学习机的在线参数更新方法及工业应用 被引量:3
12
作者 王再辰 程辉 赵亮 《现代电子技术》 2023年第22期126-130,共5页
针对乙烯裂解炉结焦导致裂解炉机理改变,从而引起的模型预测不准确问题,提出一种带有遗忘因子的在线序列简化核极限学习机算法(FOS-RKELM)。该算法基于在线序列的简化核极限学习机,数据可以在线实时添加到网络中,从而提高模型的适应度;... 针对乙烯裂解炉结焦导致裂解炉机理改变,从而引起的模型预测不准确问题,提出一种带有遗忘因子的在线序列简化核极限学习机算法(FOS-RKELM)。该算法基于在线序列的简化核极限学习机,数据可以在线实时添加到网络中,从而提高模型的适应度;通过引入遗忘因子提高最近学习数据对模型的贡献,增强模型在线学习的能力;引入聚类算法优化、简化核极限学习机(RKELM),提高算法的稳定性。结果表明:所提算法在Mackey-Glass时滞混沌序列上取得了较好的预测效果;在乙烯产物收率预测问题上,与在线序列简化核极限学习机(OS-RKELM)、简化核极限学习机(RKELM)、BP神经网络和径向基学习机(RBF)算法相比,该算法平均绝对误差显著减小,证明了该算法的有效性。 展开更多
关键词 在线序列简化核极限学习机(OS-RKELM) 简化核极限学习机(RKELM) 遗忘因子 在线序列 参数更新 乙烯裂解炉
在线阅读 下载PDF
瓦斯浓度动态在线预测模型 被引量:1
13
作者 丰胜成 卢万杰 +2 位作者 徐耀松 孟庭儒 代巍 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2019年第1期1-6,共6页
为有效预测采煤工作面的瓦斯浓度,针对具有高度非线性、不确定性、时变性及复杂性的瓦斯浓度序列,提出在线序贯极限学习机理论的瓦斯浓度动态预测模型,该模型可以实时更新监测信息,并根据历史数据和当前数据进行模型的离线训练和在线学... 为有效预测采煤工作面的瓦斯浓度,针对具有高度非线性、不确定性、时变性及复杂性的瓦斯浓度序列,提出在线序贯极限学习机理论的瓦斯浓度动态预测模型,该模型可以实时更新监测信息,并根据历史数据和当前数据进行模型的离线训练和在线学习以完成对未来时刻瓦斯浓度的动态预测.同时,引入自适应萤火虫算法优化预测模型参数.实验结果表明:该方法通过实时更新样本数据,降低了复杂度,耗时小,学习影射能力强.该模型的预测误差比BPNN和ELM网络模型低,具备良好的预测精度与更强的泛化能力. 展开更多
关键词 瓦斯浓度 动态在线预测 在线序贯极限学习机 萤火虫算法 自适应步长调整
在线阅读 下载PDF
多视角特征融合的鲁棒的目标跟踪方法 被引量:2
14
作者 张晶 张永 魏琦 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第11期2108-2124,共17页
针对传统目标追踪模型中单一特征对目标描述不准确、不充分,产生噪声样本作为目标参与后续计算出现跟踪漂移等问题,提出多视角特征融合的鲁棒目标跟踪方法.首先利用迭代求解单一特征训练误差和最小的方式实现样本多视角特征自动征融合... 针对传统目标追踪模型中单一特征对目标描述不准确、不充分,产生噪声样本作为目标参与后续计算出现跟踪漂移等问题,提出多视角特征融合的鲁棒目标跟踪方法.首先利用迭代求解单一特征训练误差和最小的方式实现样本多视角特征自动征融合与描述,引入高次幂系数避免模型退化,并利用核方法保证维度不同特征的融合;其次将模型进一步拓展为增量学习方法,实现目标检测阶段判别模型实时构建,并获得当前帧候选目标样本集;最后根据候选目标样本集与判别边界位置关系,选择最优样本作为当前帧目标样本并利用指数函数增加样本间区分度.在20个具有挑战的图像序列上对文中方法进行验证,实验结果表明,该方法与目前流行的目标跟踪模型比较,获得了较好的效果与较高的鲁棒性. 展开更多
关键词 多视角学习 极端学习机 在线极端学习机 目标跟踪
在线阅读 下载PDF
低成本微电网轻量化在线超短期光伏功率预测算法设计 被引量:2
15
作者 陈晓科 陈奇芳 +1 位作者 何婷 黄锦成 《控制理论与应用》 EI CAS CSCD 北大核心 2016年第12期1658-1666,共9页
本文结合用户侧光伏微电网的实际工程需求,研究了满足嵌入式应用需求的轻量化在线超短期光伏功率预测算法.采用了核函数极限学习机算法作为在线超短期光伏功率预测算法的核心,通过使用特征序列代替传统时间序列作为训练样本集,实现了数... 本文结合用户侧光伏微电网的实际工程需求,研究了满足嵌入式应用需求的轻量化在线超短期光伏功率预测算法.采用了核函数极限学习机算法作为在线超短期光伏功率预测算法的核心,通过使用特征序列代替传统时间序列作为训练样本集,实现了数据量的轻量化设计;通过基于趋势加权相似度的训练样本精选,提高了算法精度,简化了计算量,降低了算法计算时间.通过嵌入式系统实验测试结果表明,本文提出的轻量化超短期光伏预测算法在精度、计算时间和数据存储等方面都能满足嵌入式系统低成本应用的需求. 展开更多
关键词 光伏功率预测 超短期 轻量化 核函数极限学习机
在线阅读 下载PDF
基于增量稀疏核极限学习机的柴油机故障在线诊断 被引量:7
16
作者 刘敏 张英堂 +1 位作者 李志宁 范红波 《上海交通大学学报》 EI CAS CSCD 北大核心 2019年第2期217-224,共8页
为实现柴油机故障在线诊断,提出了基于增量稀疏核极限学习机(ISKELM)的快速在线诊断方法.针对核在线学习中的样本稀疏化与模型膨胀问题,提出了基于瞬时信息测量的稀疏核函数字典构造策略,根据最小化字典冗余和最大化字典元素自信息量的... 为实现柴油机故障在线诊断,提出了基于增量稀疏核极限学习机(ISKELM)的快速在线诊断方法.针对核在线学习中的样本稀疏化与模型膨胀问题,提出了基于瞬时信息测量的稀疏核函数字典构造策略,根据最小化字典冗余和最大化字典元素自信息量的原则实现样本前向稀疏与后向删减,在最佳阶数内对字典进行在线扩充与修剪,从而建立阶数有限且结构稀疏的诊断模型.针对模型核权重矩阵更新问题,提出了增样学习与改进减样学习算法对核权重矩阵进行在线递推求解,降低了计算复杂度,提高了模型在线更新速度.UCI标准数据与柴油机故障数据分类实验结果表明,与几类现有在线诊断算法相比,ISKELM在保证较高分类精度的同时,极大地提高了在线建模速度,更加快速准确地实现了柴油机故障在线诊断. 展开更多
关键词 增量稀疏核极限学习机 样本稀疏 瞬时信息测量 稀疏核函数字典 减样学习 在线诊断
在线阅读 下载PDF
一种基于改进KELM的在线状态预测方法 被引量:8
17
作者 朱敏 许爱强 +1 位作者 陈强强 李睿峰 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2019年第7期1370-1379,共10页
针对核超限学习机(KELM)在线状态预测过程中,核矩阵阶数不断增长且难以跟踪时变动态特征的问题,提出了一个具有遗忘因子的稀疏KELM在线状态预测方法。通过引入遗忘因子构建新的目标函数,使稀疏字典中各元素依据时间远近具有不同权重,保... 针对核超限学习机(KELM)在线状态预测过程中,核矩阵阶数不断增长且难以跟踪时变动态特征的问题,提出了一个具有遗忘因子的稀疏KELM在线状态预测方法。通过引入遗忘因子构建新的目标函数,使稀疏字典中各元素依据时间远近具有不同权重,保证了模型对动态变化的有效跟踪;通过最小化字典的快速留一交叉验证(FLOO-CV)误差,选择具有预定规模的关键节点构成字典;基于当前字典,通过矩阵初等变换和分块求逆,实现相关参数的递推更新。某型飞机发动机的状态预测结果表明,与目前已有的3种在线序贯KELM相比,所提方法在6个监测项目上的平均训练时间分别缩短了7.5%、62.0%和81.9%,平均预测精度分别提升了44.0%、19.9%和50.9%。 展开更多
关键词 状态预测 在线序贯学习 快速留一交叉验证(FLOO-CV) 超限学习机 核方法
在线阅读 下载PDF
基于增量稀疏核极限学习机的发动机状态在线预测 被引量:3
18
作者 刘敏 张英堂 +1 位作者 范红波 李志宁 《北京理工大学学报》 EI CAS CSCD 北大核心 2019年第1期34-40,共7页
针对发动机状态在线预测中样本累积、预测模型膨胀和在线更新速度慢等问题,提出了基于增量稀疏核极限学习机的在线预测方法.该方法定义了KELM核函数矩阵的稀疏测量矩阵,并根据矩阵原子相干最小化和自信息量最大化的样本信息度量准则实... 针对发动机状态在线预测中样本累积、预测模型膨胀和在线更新速度慢等问题,提出了基于增量稀疏核极限学习机的在线预测方法.该方法定义了KELM核函数矩阵的稀疏测量矩阵,并根据矩阵原子相干最小化和自信息量最大化的样本信息度量准则实现在线样本前向稀疏与后向删减,提高了样本稀疏化效率.利用有效样本对测量矩阵在最佳阶数内进行在线扩充与修剪,限制了预测模型膨胀.利用改进的增量建模方法对模型的核权重矩阵进行递推更新,从而建立规模有限且结构稀疏的在线预测模型,提高了在线建模速度.仿真数据和发动机状态参数在线预测实验结果表明,与现有在线预测方法相比,ISKELM具有更高的样本稀疏化和在线建模效率.对发动机排气温度进行120步预测时,预测速度分别提高了80.50%和31.72%,预测精度分别提高了48.56%和15.81%. 展开更多
关键词 核极限学习机 稀疏测量矩阵 样本信息度量 增量建模 在线预测
在线阅读 下载PDF
基于多模态的在线序列极限学习机研究 被引量:5
19
作者 李琦 谢珺 +2 位作者 张喆 董俊杰 续欣莹 《计算机工程》 CAS CSCD 北大核心 2021年第7期67-73,80,共8页
单一模态包含的物体信息有限,导致在物体材质识别分类中表现不佳,而传统多模态融合方法在样本训练过程中需要输入所有数据。提出一种多模态的多尺度局部感受野在线序列极限学习机方法。对物体不同模态样本运用改进的特征提取框架,利用... 单一模态包含的物体信息有限,导致在物体材质识别分类中表现不佳,而传统多模态融合方法在样本训练过程中需要输入所有数据。提出一种多模态的多尺度局部感受野在线序列极限学习机方法。对物体不同模态样本运用改进的特征提取框架,利用多尺度局部感受野感知样本信息提取特征,并将不同模态特征融合后通过在线序列极限学习机进行训练学习。在线序列极限学习机在训练过程中增量式地输入样本进行训练,当有新数据需要训练时无需对所有数据重新训练。在TUM触觉纹理数据库上进行验证,实验结果表明,多模态融合的分类精度高于单模态的分类精度,且改进的特征提取框架可以显著提升分类性能。 展开更多
关键词 多模态 RGB颜色三通道 局部感受野 在线序列极限学习机 物体材质分类
在线阅读 下载PDF
改进极限学习机在FBG的光纤光栅传感器标定中的应用
20
作者 夏翔 朱利锋 +3 位作者 葛青青 黄镠 叶张冲 孙永斌 《电测与仪表》 2025年第9期218-224,共7页
针对实际应用中光纤光栅传感器服役时间长和工作环境恶劣等原因导致的标定曲线缓慢漂移问题,提出了一种改进在线顺序极限学习机用于光纤光栅传感系统的动态标定。在初始训练阶段引入正则化避免产生奇异矩阵,提高泛化能力。在线学习阶段... 针对实际应用中光纤光栅传感器服役时间长和工作环境恶劣等原因导致的标定曲线缓慢漂移问题,提出了一种改进在线顺序极限学习机用于光纤光栅传感系统的动态标定。在初始训练阶段引入正则化避免产生奇异矩阵,提高泛化能力。在线学习阶段引入自适应遗忘因子对新旧样本比重进行调整,提高预测精度。通过试验进行对比分析,验证了该方法的优越性。结果表明,与传统标定方法相比,所提方法的均方根误差(root mean square error,RMSE)指标始终最低,R^(2)指标始终最高,具有较高的精度和较好的泛化性能,解决了标定曲线缓慢漂移问题,满足光纤光栅传感器的要求,可以应用于实际工程。 展开更多
关键词 光纤光栅 动态标定 传感系统 在线顺序极限学习机 正则化 自适应遗忘因子
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部