The whole angle mode gyroscope(WAMG)is considered to be the next generation architecture,but it is suffered from the asymmetry errors to conduct real products.This paper proposes a novel high frequency injection based...The whole angle mode gyroscope(WAMG)is considered to be the next generation architecture,but it is suffered from the asymmetry errors to conduct real products.This paper proposes a novel high frequency injection based approach for the error parameters online identification for the WAMG.The significance is that it can separate physical and error fingerprints to enable online calibration.The nonlinear WAMG dynamics are discretized to meet the requirement of numerical precision and computation efficiency.The optimized estimation methods are then constructed and compared to track asymmetry error parameters continuously.In the validation part,its results firstly prove that the proposed scheme can accurately identify constant asymmetry parameters with an overall tracking error of less than 1 ppm and the extreme numerical convergence can reach 10^(-12)ppm.Under the dynamic asymmetry variation condition,the root mean square errors(RMSE)indicate that the tracking accuracy can reach the level of10^(-3),which shows the robustness of the proposed scheme.In summary,the proposed method can effectively estimate the WAMG asymmetry errors online with satisfied performance and practical values.展开更多
G-DINA(the generalizeddeterministic input,noisy and gate)模型限制条件少,应用范围广,满足大量心理与教育评估测验数据的要求。研究提出一种适用于G-DINA等模型的同时标定新题Q矩阵与项目参数的认知诊断计算机化自适应测验(CD-CAT)...G-DINA(the generalizeddeterministic input,noisy and gate)模型限制条件少,应用范围广,满足大量心理与教育评估测验数据的要求。研究提出一种适用于G-DINA等模型的同时标定新题Q矩阵与项目参数的认知诊断计算机化自适应测验(CD-CAT)在线标定新方法SCADOCM,以期促进CD-CAT在实践中的推广与应用。本研究分别基于模拟题库以及真实题库进行研究,结果表明:相比传统的SIE方法,SCADOCM在各实验条件下均具有较为理想的标定精度与标定效率,应用前景较好;SIE方法不适用于饱和的G-DINA等模型,其各实验条件下的Q矩阵标定精度均较低。展开更多
基金funded by the National Natural Science Foundation under grant No.62171420Natural Science Foundation of Shandong Province under grant No.ZR201910230031。
文摘The whole angle mode gyroscope(WAMG)is considered to be the next generation architecture,but it is suffered from the asymmetry errors to conduct real products.This paper proposes a novel high frequency injection based approach for the error parameters online identification for the WAMG.The significance is that it can separate physical and error fingerprints to enable online calibration.The nonlinear WAMG dynamics are discretized to meet the requirement of numerical precision and computation efficiency.The optimized estimation methods are then constructed and compared to track asymmetry error parameters continuously.In the validation part,its results firstly prove that the proposed scheme can accurately identify constant asymmetry parameters with an overall tracking error of less than 1 ppm and the extreme numerical convergence can reach 10^(-12)ppm.Under the dynamic asymmetry variation condition,the root mean square errors(RMSE)indicate that the tracking accuracy can reach the level of10^(-3),which shows the robustness of the proposed scheme.In summary,the proposed method can effectively estimate the WAMG asymmetry errors online with satisfied performance and practical values.
文摘G-DINA(the generalizeddeterministic input,noisy and gate)模型限制条件少,应用范围广,满足大量心理与教育评估测验数据的要求。研究提出一种适用于G-DINA等模型的同时标定新题Q矩阵与项目参数的认知诊断计算机化自适应测验(CD-CAT)在线标定新方法SCADOCM,以期促进CD-CAT在实践中的推广与应用。本研究分别基于模拟题库以及真实题库进行研究,结果表明:相比传统的SIE方法,SCADOCM在各实验条件下均具有较为理想的标定精度与标定效率,应用前景较好;SIE方法不适用于饱和的G-DINA等模型,其各实验条件下的Q矩阵标定精度均较低。