A new theory for inverse problem of wave equation, that is, the union method for scattered wave extrapolation and velocity imaging, is proposed in this paper. This method is very different from the classical wave extr...A new theory for inverse problem of wave equation, that is, the union method for scattered wave extrapolation and velocity imaging, is proposed in this paper. This method is very different from the classical wave extrapolation for migration, because we relate directly the scattered wave extrapolation to velocity inversion. And also this method is different from any linearized inverse method of wave equation, because we needn′t use linearized approximation. Because of this, the method can be applied to strong scattering case effectively (i.e. the value of scattered wave is not small, which can not be neglected). This method, of course, is different from nonlinearized optimum inverse method, because in this paper, the nonlinear inverse problem is turned into two steps inverse problem, i.e. scattered wave extrapolated and velocity imaging, which can be solved easily. Hence, the problem how to get the global optimum solution by using the nonlinearized optimum inverse method doesn′t bother us by using the method in this paper.展开更多
This paper designs a 3 mm radiometer and validate with experiments based on the principle of passive millimeter wave (PMMW) imaging. The poor spatial resolution, which is limited by antenna size, should be improved ...This paper designs a 3 mm radiometer and validate with experiments based on the principle of passive millimeter wave (PMMW) imaging. The poor spatial resolution, which is limited by antenna size, should be improved by post data processing. A conjugate-gradient (CG) algorithm is adopted to circumvent this drawback. Simulation and real data collected in laboratory environment are given, and the results show that the CG algorithm improves the spatial resolution and convergent rate. Further, it can reduce the ringing effects which are caused by regularizing the image restoration. Thus, the CG algorithm is easily implemented for PMMW imaging.展开更多
Passive millimeter wave (PMMW) images inherently have the problem of poor resolution owing to limited aperture dimension. Thus, efficient post-processing is necessary to achieve resolution improvement. An adaptive p...Passive millimeter wave (PMMW) images inherently have the problem of poor resolution owing to limited aperture dimension. Thus, efficient post-processing is necessary to achieve resolution improvement. An adaptive projected Landweber (APL) super-resolution algorithm using a spectral correction procedure, which attempts to combine the strong points of all of the projected Landweber (PL) iteration and the adaptive relaxation parameter adjustment and the spectral correction method, is proposed. In the algorithm, the PL iterations are implemented as the main image restoration scheme and a spectral correction method is included in which the calculated spectrum within the passband is replaced by the known low frequency component. Then, the algorithm updates the relaxation parameter adaptively at each iteration. A qualitative evaluation of this algorithm is performed with simulated data as well as actual radiometer image captured by 91.5 GHz mechanically scanned radiometer. From experiments, it is found that the super-resolution algorithm obtains better results and enhances the resolution and has lower mean square error (MSE). These constraints and adaptive character and spectral correction procedures speed up the convergence of the Landweber algorithm and reduce the ringing effects that are caused by regularizing the image restoration problem.展开更多
文摘A new theory for inverse problem of wave equation, that is, the union method for scattered wave extrapolation and velocity imaging, is proposed in this paper. This method is very different from the classical wave extrapolation for migration, because we relate directly the scattered wave extrapolation to velocity inversion. And also this method is different from any linearized inverse method of wave equation, because we needn′t use linearized approximation. Because of this, the method can be applied to strong scattering case effectively (i.e. the value of scattered wave is not small, which can not be neglected). This method, of course, is different from nonlinearized optimum inverse method, because in this paper, the nonlinear inverse problem is turned into two steps inverse problem, i.e. scattered wave extrapolated and velocity imaging, which can be solved easily. Hence, the problem how to get the global optimum solution by using the nonlinearized optimum inverse method doesn′t bother us by using the method in this paper.
基金supported partly by the State Key Program of National Natural Science Foundation of China(60632020)the Youth Science Foundation of University of Electronic Science and Technology of China(JX0823).
文摘This paper designs a 3 mm radiometer and validate with experiments based on the principle of passive millimeter wave (PMMW) imaging. The poor spatial resolution, which is limited by antenna size, should be improved by post data processing. A conjugate-gradient (CG) algorithm is adopted to circumvent this drawback. Simulation and real data collected in laboratory environment are given, and the results show that the CG algorithm improves the spatial resolution and convergent rate. Further, it can reduce the ringing effects which are caused by regularizing the image restoration. Thus, the CG algorithm is easily implemented for PMMW imaging.
基金the National Natural Science Foundation of China (60632020).
文摘Passive millimeter wave (PMMW) images inherently have the problem of poor resolution owing to limited aperture dimension. Thus, efficient post-processing is necessary to achieve resolution improvement. An adaptive projected Landweber (APL) super-resolution algorithm using a spectral correction procedure, which attempts to combine the strong points of all of the projected Landweber (PL) iteration and the adaptive relaxation parameter adjustment and the spectral correction method, is proposed. In the algorithm, the PL iterations are implemented as the main image restoration scheme and a spectral correction method is included in which the calculated spectrum within the passband is replaced by the known low frequency component. Then, the algorithm updates the relaxation parameter adaptively at each iteration. A qualitative evaluation of this algorithm is performed with simulated data as well as actual radiometer image captured by 91.5 GHz mechanically scanned radiometer. From experiments, it is found that the super-resolution algorithm obtains better results and enhances the resolution and has lower mean square error (MSE). These constraints and adaptive character and spectral correction procedures speed up the convergence of the Landweber algorithm and reduce the ringing effects that are caused by regularizing the image restoration problem.