期刊文献+
共找到707篇文章
< 1 2 36 >
每页显示 20 50 100
EMPIRICAL BAYES ESTIMATION FOR ESTIMABLE FUNCTION OF REGRESSION COEFFICIENT IN A MULTIPLE LINEAR REGRESSION MODEL 被引量:1
1
作者 韦来生 《Acta Mathematica Scientia》 SCIE CSCD 1996年第S1期22-33,共12页
In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard n... In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard normal distribution. We get the EB estimators by using kernel estimation of multivariate density function and its first order partial derivatives. It is shown that the convergence rates of the EB estimators are under the condition where an integer k > 1 . is an arbitrary small number and m is the dimension of the vector Y. 展开更多
关键词 linear regression model estimable function empirical Bayes estimation convergence rates
在线阅读 下载PDF
A LARGE SAMPLE ESTIMATE IN MEDIAN LINEAR REGRESSION MODEL Ⅰ: NONTRUNCATED CASE 被引量:1
2
作者 陈希孺 《Acta Mathematica Scientia》 SCIE CSCD 1990年第4期412-421,共10页
This paper uses a grouping-adjusting procedure to the data from a median linear regression model, and estimtes the regression coefficients by the method of weighted least squares. This method simplifies computation an... This paper uses a grouping-adjusting procedure to the data from a median linear regression model, and estimtes the regression coefficients by the method of weighted least squares. This method simplifies computation and in the meantime, preserves the same asymptotic normal distribution for the estimator, as in the ordinary minimum L_1-norm estimates. 展开更多
关键词 A LARGE SAMPLE ESTIMATE IN MEDIAN linear regression model NONTRUNCATED CASE
在线阅读 下载PDF
LIMITING BEHAVIOR OF RECURSIVE M-ESTIMATORS IN MULTIVARIATE LINEAR REGRESSION MODELS AND THEIR ASYMPTOTIC EFFICIENCIES
3
作者 缪柏其 吴月华 刘东海 《Acta Mathematica Scientia》 SCIE CSCD 2010年第1期319-329,共11页
Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursi... Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursive M-estimators of regression coefficients and scatter parameters are strongly consistent and the recursive M-estimator of the regression coefficients is also asymptotically normal distributed. Furthermore, optimal recursive M-estimators, asymptotic efficiencies of recursive M-estimators and asymptotic relative efficiencies between recursive M-estimators of regression coefficients are studied. 展开更多
关键词 asymptotic efficiency asymptotic normality asymptotic relative efficiency least absolute deviation least squares M-ESTIMATION multivariate linear optimal estimator reeursive algorithm regression coefficients robust estimation regression model
在线阅读 下载PDF
PARAMETRIC TEST IN PARTIAL LINEAR REGRESSION MODELS
4
作者 高集体 《Acta Mathematica Scientia》 SCIE CSCD 1995年第S1期1-10,共10页
Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Mulle... Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Muller[1] is also proposed to be a class of new nearest neighbor estimates of g(). Baed on the nonparametric regression procedures, we investigate a statistic for testing H0:g=0, and obtain some aspoptotic results about estimates. 展开更多
关键词 Partial linear model Parametric test Asmpptotic normality Nonperametric regression technique.
在线阅读 下载PDF
EFFICIENT ESTIMATION OF FUNCTIONAL-COEFFICIENT REGRESSION MODELS WITH DIFFERENT SMOOTHING VARIABLES 被引量:5
5
作者 张日权 李国英 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期989-997,共9页
In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the l... In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective. 展开更多
关键词 Asymptotic normality averaged method different smoothing variables functional-coefficient regression models local linear method one-step back-fitting procedure
在线阅读 下载PDF
Gamma generalized linear model to investigate the effects of climate variables on the area burned by forest fire in northeast China 被引量:2
6
作者 Futao Guo Guangyu Wang +3 位作者 John L. Innes Xiangqing Ma Long Sun Haiqing Hu 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第3期545-555,共11页
The purpose of this study was to determine a suitable model for investigating the effects of climate factors on the area burned by forest fire in the Tahe forest region, Daxing'an Mountains, in northeast China. The r... The purpose of this study was to determine a suitable model for investigating the effects of climate factors on the area burned by forest fire in the Tahe forest region, Daxing'an Mountains, in northeast China. The response variables were the area burned by lightning- caused fire, human-caused fire, and total burned area. The predictor variables were nine climate variables collected from the local weather station. Three regression models were utilized, including multiple linear regression, log- linear model (log-transformation on both response and predictor variables), and gamma-generalized linear model. The goodness-of-fit of the models were compared based on model fitting statistics such as R2, AIC, and RMSE. The results revealed that the gamma-generalized linear model was generally superior to both multiple linear regressionmodel and log-linear model for fitting the fire data. Further, the best models were selected based on the criteria that the climate variables were statistically significant at at = 0.05. The gamma best models indicated that maximum wind speed, precipitation, and days that rainfall greater than 0.1 mm had significant impacts on the area burned by the lightning-caused fire, while the mean temperature and minimum relative humidity were the .main drivers of the burned area caused by human activities. Overall, the total burned area by forest fire was significantly influenced by days that rainfall greater than 0.1 mm and minimum rela- tive humidity, indicating that the moisture condition of forest stands determine the burned area by forest fire. 展开更多
关键词 Lightning-caused fire Human-caused fire Multiple linear regression Log-linear model Daxing'anmountains
在线阅读 下载PDF
STRONG CONVERGENCE RATES OF SEVERAL ESTIMATORS IN SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS 被引量:1
7
作者 周勇 尤进红 王晓婧 《Acta Mathematica Scientia》 SCIE CSCD 2009年第5期1113-1127,共15页
This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) prop... This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively. 展开更多
关键词 partially linear regression model varying-coefficient profile leastsquares error variance strong convergence rate law of iterated logarithm
在线阅读 下载PDF
Predicting carbon storage of mixed broadleaf forests based on the finite mixture model incorporating stand factors,site quality,and aridity index
8
作者 Yanlin Wang Dongzhi Wang +2 位作者 Dongyan Zhang Qiang Liu Yongning Li 《Forest Ecosystems》 SCIE CSCD 2024年第3期276-286,共11页
The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,an... The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,and aridity index to predict stand CS in multi-species mixed forests with complex structures.This study used data from70 survey plots for mixed broadleaf Populus davidiana and Betula platyphylla forests in the Mulan Rangeland State Forest,Hebei Province,China,to construct the DDF based on maximum likelihood estimation and finite mixture model(FMM).Ordinary least squares(OLS),linear seemingly unrelated regression(LSUR),and back propagation neural network(BPNN)were used to investigate the influences of stand factors,site quality,and aridity index on the shape and scale parameters of DDF and predicted stand CS of mixed broadleaf forests.The results showed that FMM accurately described the stand-level diameter distribution of the mixed P.davidiana and B.platyphylla forests;whereas the Weibull function constructed by MLE was more accurate in describing species-level diameter distribution.The combined variable of quadratic mean diameter(Dq),stand basal area(BA),and site quality improved the accuracy of the shape parameter models of FMM;the combined variable of Dq,BA,and De Martonne aridity index improved the accuracy of the scale parameter models.Compared to OLS and LSUR,the BPNN had higher accuracy in the re-parameterization process of FMM.OLS,LSUR,and BPNN overestimated the CS of P.davidiana but underestimated the CS of B.platyphylla in the large diameter classes(DBH≥18 cm).BPNN accurately estimated stand-and species-level CS,but it was more suitable for estimating stand-level CS compared to species-level CS,thereby providing a scientific basis for the optimization of stand structure and assessment of carbon sequestration capacity in mixed broadleaf forests. 展开更多
关键词 Weibull function Finite mixture model linear seemingly unrelated regression Back propagation neural network Carbon storage
在线阅读 下载PDF
历史性街道活力测度与提升研究
9
作者 张哲 黄春华 《现代城市研究》 北大核心 2025年第2期74-81,共8页
高密度城市蔓延背景下,激活和维护历史街道空间活力对城市良性循环至关重要。基于情感语义分析和LDA主题模型,文章结合实地调研和网络数据,构建了历史性街道空间活力评价指标体系。文章通过多元线性回归方程,探究济南市百花洲历史性街... 高密度城市蔓延背景下,激活和维护历史街道空间活力对城市良性循环至关重要。基于情感语义分析和LDA主题模型,文章结合实地调研和网络数据,构建了历史性街道空间活力评价指标体系。文章通过多元线性回归方程,探究济南市百花洲历史性街区街道活力现状及其影响因素。研究发现,百花洲街区活力南北高、东西低,分布不均。街道空间整合度、选择度、业态密度和视域对活力有显著正向影响。利用sDNA等方法评估影响因素,提出优化措施,以促进历史性街道的可持续发展。 展开更多
关键词 济南百花洲 历史性街道 街道空间活力 情感语义分析 LDA主题模型 sDNA 多元线性回归方程
在线阅读 下载PDF
基于MLR与ARDL的城市湖泊溶解氧浓度模拟
10
作者 赵洪铖 杨菲 +2 位作者 周鹏 郭家诚 黄金柏 《人民珠江》 2025年第1期32-39,共8页
开展城市湖泊溶解氧模拟研究,对促进湖泊水质模拟研究的进展具有重要作用。选取近扬州市中心附近的一个城市湖泊作为研究的特定区域,利用2020年溶解氧、蓝绿藻浓度、水温、电导率、pH观测结果,构建多元线性回归模型和自回归分布滞后模型... 开展城市湖泊溶解氧模拟研究,对促进湖泊水质模拟研究的进展具有重要作用。选取近扬州市中心附近的一个城市湖泊作为研究的特定区域,利用2020年溶解氧、蓝绿藻浓度、水温、电导率、pH观测结果,构建多元线性回归模型和自回归分布滞后模型,对2020年(2020-01-01至2020-12-31)和该年各季度的溶解氧观测序列值进行模拟,结果表明:前者模拟精度相对较低,后者的模拟精度较高,后者对不同时段溶解氧模拟结果的决定系数R^(2)在0.75~0.99;2种模型对湖泊溶解氧的模拟均有较好的适用性,其中,自回归分布滞后模型对时段变化溶解氧序列模拟的适用性更好。 展开更多
关键词 城市湖泊 溶解氧浓度 多元线性回归模型 自回归分布滞后模型
在线阅读 下载PDF
基于广义线性模型的激光诱导击穿光谱铜含量检测
11
作者 何静 刘泉澄 +1 位作者 熊中刚 陈林宇 《红外与激光工程》 北大核心 2025年第2期48-57,共10页
在众多激光诱导击穿光谱(Laser-induced Breakdown Spectroscopy,LIBS)分析方法中,主成分分析(Principal Component Analysis,PCA)和偏最小二乘回归(Partial Least Squares Regression,PLSR)是对原始光谱进行线性特征变换来降低光谱冗... 在众多激光诱导击穿光谱(Laser-induced Breakdown Spectroscopy,LIBS)分析方法中,主成分分析(Principal Component Analysis,PCA)和偏最小二乘回归(Partial Least Squares Regression,PLSR)是对原始光谱进行线性特征变换来降低光谱冗余信息,但是上述两种方法无法确定哪些谱线属于冗余谱线,导致模型的物理解释性也较差。为深入了解原始谱线在降维-定量模型中的物理意义,采用Lasso、Ridge和Elastic Net等3种广义线性模型(Generalized Linear Models,GLM)对天然铜矿/精矿中的铜含量进行检测。首先对9种铜矿/精矿样本的光谱特性进行了简要分析,然后选定了11条原子谱线和18条离子谱线用于预测建模,最后详细分析了Elastic Net模型中参数α对模型性能和有效分析谱线数量的影响。定量结果表明,Lasso、Ridge和Elastic Net的测试集均方误差(Mean Square Error,MSE)分别为1.706、1.180和1.231,相对于PLSR而言,上述3种方法的MSE分别降低了7.4%、33.2%和36.0%。在分析谱线数量方面,Ridge和Elastic Net模型中29条分析谱线均为有效分析谱线,而Lasso中仅有21条有效分析谱线。显著性分析结果表明,Ridge和Elastic Net的整体性能优于传统的PLSR,而Lasso的模型性能与PLSR相当。 展开更多
关键词 激光诱导击穿光谱 定量分析 广义线性模型 弹性网络 套索回归 岭回归
在线阅读 下载PDF
四川盆地耕地表层土壤容重缺失数据填补方法
12
作者 李艾雯 李文丹 +6 位作者 宋靓颖 冉敏 陈丹 成金礼 齐浩然 郭聪慧 李启权 《土壤学报》 北大核心 2025年第1期40-53,共14页
构建土壤容重高精度预测方法是准确补全区域土壤属性数据库的需要。本研究基于全国第二次土壤普查时获得的四川盆地(含四川省和重庆市)2883个典型耕地样点数据,运用相关分析、方差分析和回归分析等方法揭示表层土壤容重的统计特征及其... 构建土壤容重高精度预测方法是准确补全区域土壤属性数据库的需要。本研究基于全国第二次土壤普查时获得的四川盆地(含四川省和重庆市)2883个典型耕地样点数据,运用相关分析、方差分析和回归分析等方法揭示表层土壤容重的统计特征及其主控因素,采用传统土壤传递函数(PTFs)、多元线性回归(MLR)模型、径向基函数神经网络(RBFNN)模型和随机森林(RF)模型通过不分区、分流域以及分土类3种建模方式建立土壤容重预测模型,以期实现对该区域土壤容重缺失值的填补。结果表明:研究区耕地表层土壤容重处于0.60~1.71 g·cm^(-3)之间,均值为1.29 g·cm^(-3)。土壤有机质、土壤亚类和夏季降雨量是土壤容重最重要的影响因素。分流域构建的RBFNN预测模型能较好地捕捉土壤容重与各影响因素的非线性关系以及这种关系的空间非平稳性,432个独立验证样点预测结果的决定系数(R^(2))和均方根误差(RMSE)分别为0.519和0.095 g·cm^(-3),明显优于其他方法,其不仅有助于提高四川盆地耕地表层土壤容重缺失值的填补精度,也为其他区域土壤性质缺失值的填补提供了方法参考。 展开更多
关键词 土壤容重 传递函数 四川盆地 多元线性回归模型 径向基函数神经网络模型 随机森林模型
在线阅读 下载PDF
基于MLR-DE-LSTM的大坝变形串联组合预测模型
13
作者 刘天翼 艾星星 张九丹 《中国农村水利水电》 北大核心 2025年第2期207-212,共6页
为了解决单一模型在大坝变形预测中可能带来的信息损失问题,将差分进化算法(DE)用于长短期记忆神经网络(LSTM)模型的参数优化,并结合多元线性回归(MLR)模型建立MLR-DE-LSTM串联组合模型。基于某重力坝的水平位移原型监测数据,对该模型... 为了解决单一模型在大坝变形预测中可能带来的信息损失问题,将差分进化算法(DE)用于长短期记忆神经网络(LSTM)模型的参数优化,并结合多元线性回归(MLR)模型建立MLR-DE-LSTM串联组合模型。基于某重力坝的水平位移原型监测数据,对该模型进行了验证。结果表明,DE算法可以有效提高LSTM模型的预测精度,LSTM模型可以有效挖掘MLR模型尚未完全解释的信息。相较于单一模型,组合模型在预测位移数据时具有更高的准确度和稳定性,组合模型在充分利用数据信息方面具有更大优势。研究结果为提高大坝变形预测精度提供了参考价值。 展开更多
关键词 大坝变形 差分进化算法 长短期记忆神经网络 多元线性回归 组合模型
在线阅读 下载PDF
基于大数据与人工智能的天气预测模型研究
14
作者 管冬河 苏博 《现代信息科技》 2025年第6期93-99,104,共8页
全球气候变化的不确定性和复杂性对天气预测的准确性提出了更高的要求,研究旨在开发一个基于机器学习的高效天气预测模型,以应对全球气候变化带来的挑战。研究利用Python集成了回归分析和决策树算法等统计建模技术,对气象数据进行深入... 全球气候变化的不确定性和复杂性对天气预测的准确性提出了更高的要求,研究旨在开发一个基于机器学习的高效天气预测模型,以应对全球气候变化带来的挑战。研究利用Python集成了回归分析和决策树算法等统计建模技术,对气象数据进行深入分析和处理。结果表明:决策树模型在处理非线性气象数据方面具有独特优势,其预测精度和泛化能力均优于传统回归模型;线性回归分析模型在捕捉数据线性关系方面表现稳健;模型在不同数据集上展现了良好的泛化能力,并能满足实时预测的性能要求。该研究的成果为天气预测领域提供了新的视角和工具,同时为机器学习在气象学中的未来应用奠定了基础。 展开更多
关键词 机器学习 天气预测模型 决策树 线性回归
在线阅读 下载PDF
基于多元线性回归与判别分类模型的黄河水沙监测优化策略研究
15
作者 耿英豪 周晓栋 +2 位作者 漆俊璐 李昂 王崇润 《科学技术创新》 2025年第4期60-63,共4页
本文主要针对黄河水沙监测数据进行了深入研究,利用多元线性回归模型和判别分类模型对黄河的年总水流量、年总排沙量以及水沙通量进行了精准分析。首先,通过多元线性回归模型,本文成功建立了含沙量与时间、水位、水流量之间的定量关系,... 本文主要针对黄河水沙监测数据进行了深入研究,利用多元线性回归模型和判别分类模型对黄河的年总水流量、年总排沙量以及水沙通量进行了精准分析。首先,通过多元线性回归模型,本文成功建立了含沙量与时间、水位、水流量之间的定量关系,并利用最小二乘法估算了回归系数,得到了准确的含沙量预测值。其次,通过对水沙通量的计算和分析,本文利用判别分类模型将监测方案分为无波动、小波动、中波动、大波动四种类型,并提出了相应的监测方案建议。 展开更多
关键词 多元线性回归模型 最小二乘法 判别分类模型
在线阅读 下载PDF
基于Logistic模型的翻译机器人语义自动校准方法
16
作者 胡志坤 《电子设计工程》 2025年第3期47-52,共6页
针对翻译机器人在语义翻译过程中由于翻译误差容易导致翻译结果与原始语言意图不符的问题,提出一种基于Logistic模型的语义自动校准方法。通过语音识别模块将语音信号映射为语义文本,对识别的语义文本进行处理,通过改进的广义线性回归模... 针对翻译机器人在语义翻译过程中由于翻译误差容易导致翻译结果与原始语言意图不符的问题,提出一种基于Logistic模型的语义自动校准方法。通过语音识别模块将语音信号映射为语义文本,对识别的语义文本进行处理,通过改进的广义线性回归模型(GLR)进行误差检测,并基于Logistic模型对翻译结果进行特征分析,预测流畅度以及准确度,实现语义自动校准。设计了针对翻译机器人语义自动校准的对比实验,实验结果表明,与基于Seq2Seq模型的翻译机器人语义自动校准方法相比,所研究方法语义校准的准确率为98%~100%,BLEU评分为35,语义校准时间为8.5~9.4 s。 展开更多
关键词 语义校准 广义线性回归 LOGISTIC模型 一维映射 相似度
在线阅读 下载PDF
Artificial neural network models predicting the leaf area index:a case study in pure even-aged Crimean pine forests from Turkey 被引量:4
17
作者 ilker Ercanli Alkan Gunlu +1 位作者 Muammer Senyurt Sedat Keles 《Forest Ecosystems》 SCIE CSCD 2018年第4期400-411,共12页
Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predic... Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands. 展开更多
关键词 Leaf area index Multivariate linear regression model Artificial neural network modeling Crimean pine Stand parameters
在线阅读 下载PDF
A dynamic optimization model of an integrated coal supply chain system and its application 被引量:8
18
作者 PENG Hong-jun ZHOU Mei-hua +2 位作者 LIU Man-zhi ZHANG Yu HUANG Yan-bo 《Mining Science and Technology》 EI CAS 2009年第6期842-846,共5页
Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system.... Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system. A dynamic optimization model of the supply chain is developed. It has achieved optimal system profit under conditions guaranteeing a certain level of customer satisfaction. Applying this model to coal production of the Xuzhou coal mines allows recommendations for a more systematic use of washing and processing,transportation and sale resources for commercial coal production to be made. The results show that this model,which is scientific and effective,has an important value for making reasonable decisions related to complex coal enterprises. 展开更多
关键词 coal supply chain multiple linear regression customer satisfaction dynamic optimization model
在线阅读 下载PDF
Quantitative inverse modeling of nitrogen content from hyperion data under stress of exhausted coal mining sites 被引量:4
19
作者 LU Xia HU Zhen-qi GUO Li 《Mining Science and Technology》 EI CAS 2009年第1期31-35,共5页
Monitoring and evaluating the nutritional status of vegetation under stress from exhausted coal mining sites by hyper-spectral remote sensing is important in future ecological restoration engineering. The Wangpingcun ... Monitoring and evaluating the nutritional status of vegetation under stress from exhausted coal mining sites by hyper-spectral remote sensing is important in future ecological restoration engineering. The Wangpingcun coal mine, located in the Mentougou district of Beijing, was chosen as a case study. The ecological damage was analyzed by 3S technology, field investigation and from chemical data. The derivative spectra of the diagnostic absorption bands are derived from the spectra measured in the field and used as characteristic spectral variables. A correlation analysis was conducted for the nitrogen content of the vegetation samples and the fast derivative spectrum and the estimation model of nitrogen content established by a multiple stepwise linear regression method. The spatial distribution of nitrogen content was extracted by a parameter mapping method from the Hyperion data which revealed the distribution of the nitrogen content. In addition, the estimation model was evaluated for two evaluation indicators which are important for the precision of the model. Experimental results indicate that by linear regression and parameter mapping, the estimation model precision was Very high. The coefficient of determination, R2, was 0.795 and the standard deviation of residual (SDR) 0.19. The nitrogen content of most samples was about 1.03% and the nitrogen content in the study site seems inversely proportional to the distance from the piles of coal waste. Therefore, we can conclude that inversely modeling nitrogen content by hyper-spectral remote sensing in exhausted coal mining sites is feasible and our study can be taken as reference in species selection and in subseauent management and maintenance in ecological restoration. 展开更多
关键词 HYPERION nitrogen content estimation model linear regression
在线阅读 下载PDF
Parameter Estimation of Time-Varying ARMA Model 被引量:3
20
作者 王文华 韩力 王文星 《Journal of Beijing Institute of Technology》 EI CAS 2004年第2期131-134,共4页
The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedbac... The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedback linear estimation algorithm is used to estimate the time-varying parameters of the ARMA model. This algorithm includes 2 linear least squares estimations and a linear filter. The influence of the order of basis time-(varying) functions on parameters estimation is analyzed. The method has the advantage of simple, saving computation time and storage space. Theoretical analysis and experimental results show the validity of this method. 展开更多
关键词 auto-regressive moving-average (ARMA) model feedback linear estimation basis time-varying function spectral estimation
在线阅读 下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部