In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard n...In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard normal distribution. We get the EB estimators by using kernel estimation of multivariate density function and its first order partial derivatives. It is shown that the convergence rates of the EB estimators are under the condition where an integer k > 1 . is an arbitrary small number and m is the dimension of the vector Y.展开更多
This paper uses a grouping-adjusting procedure to the data from a median linear regression model, and estimtes the regression coefficients by the method of weighted least squares. This method simplifies computation an...This paper uses a grouping-adjusting procedure to the data from a median linear regression model, and estimtes the regression coefficients by the method of weighted least squares. This method simplifies computation and in the meantime, preserves the same asymptotic normal distribution for the estimator, as in the ordinary minimum L_1-norm estimates.展开更多
Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursi...Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursive M-estimators of regression coefficients and scatter parameters are strongly consistent and the recursive M-estimator of the regression coefficients is also asymptotically normal distributed. Furthermore, optimal recursive M-estimators, asymptotic efficiencies of recursive M-estimators and asymptotic relative efficiencies between recursive M-estimators of regression coefficients are studied.展开更多
Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Mulle...Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Muller[1] is also proposed to be a class of new nearest neighbor estimates of g(). Baed on the nonparametric regression procedures, we investigate a statistic for testing H0:g=0, and obtain some aspoptotic results about estimates.展开更多
In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the l...In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective.展开更多
The purpose of this study was to determine a suitable model for investigating the effects of climate factors on the area burned by forest fire in the Tahe forest region, Daxing'an Mountains, in northeast China. The r...The purpose of this study was to determine a suitable model for investigating the effects of climate factors on the area burned by forest fire in the Tahe forest region, Daxing'an Mountains, in northeast China. The response variables were the area burned by lightning- caused fire, human-caused fire, and total burned area. The predictor variables were nine climate variables collected from the local weather station. Three regression models were utilized, including multiple linear regression, log- linear model (log-transformation on both response and predictor variables), and gamma-generalized linear model. The goodness-of-fit of the models were compared based on model fitting statistics such as R2, AIC, and RMSE. The results revealed that the gamma-generalized linear model was generally superior to both multiple linear regressionmodel and log-linear model for fitting the fire data. Further, the best models were selected based on the criteria that the climate variables were statistically significant at at = 0.05. The gamma best models indicated that maximum wind speed, precipitation, and days that rainfall greater than 0.1 mm had significant impacts on the area burned by the lightning-caused fire, while the mean temperature and minimum relative humidity were the .main drivers of the burned area caused by human activities. Overall, the total burned area by forest fire was significantly influenced by days that rainfall greater than 0.1 mm and minimum rela- tive humidity, indicating that the moisture condition of forest stands determine the burned area by forest fire.展开更多
This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) prop...This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively.展开更多
The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,an...The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,and aridity index to predict stand CS in multi-species mixed forests with complex structures.This study used data from70 survey plots for mixed broadleaf Populus davidiana and Betula platyphylla forests in the Mulan Rangeland State Forest,Hebei Province,China,to construct the DDF based on maximum likelihood estimation and finite mixture model(FMM).Ordinary least squares(OLS),linear seemingly unrelated regression(LSUR),and back propagation neural network(BPNN)were used to investigate the influences of stand factors,site quality,and aridity index on the shape and scale parameters of DDF and predicted stand CS of mixed broadleaf forests.The results showed that FMM accurately described the stand-level diameter distribution of the mixed P.davidiana and B.platyphylla forests;whereas the Weibull function constructed by MLE was more accurate in describing species-level diameter distribution.The combined variable of quadratic mean diameter(Dq),stand basal area(BA),and site quality improved the accuracy of the shape parameter models of FMM;the combined variable of Dq,BA,and De Martonne aridity index improved the accuracy of the scale parameter models.Compared to OLS and LSUR,the BPNN had higher accuracy in the re-parameterization process of FMM.OLS,LSUR,and BPNN overestimated the CS of P.davidiana but underestimated the CS of B.platyphylla in the large diameter classes(DBH≥18 cm).BPNN accurately estimated stand-and species-level CS,but it was more suitable for estimating stand-level CS compared to species-level CS,thereby providing a scientific basis for the optimization of stand structure and assessment of carbon sequestration capacity in mixed broadleaf forests.展开更多
Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predic...Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.展开更多
Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system....Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system. A dynamic optimization model of the supply chain is developed. It has achieved optimal system profit under conditions guaranteeing a certain level of customer satisfaction. Applying this model to coal production of the Xuzhou coal mines allows recommendations for a more systematic use of washing and processing,transportation and sale resources for commercial coal production to be made. The results show that this model,which is scientific and effective,has an important value for making reasonable decisions related to complex coal enterprises.展开更多
Monitoring and evaluating the nutritional status of vegetation under stress from exhausted coal mining sites by hyper-spectral remote sensing is important in future ecological restoration engineering. The Wangpingcun ...Monitoring and evaluating the nutritional status of vegetation under stress from exhausted coal mining sites by hyper-spectral remote sensing is important in future ecological restoration engineering. The Wangpingcun coal mine, located in the Mentougou district of Beijing, was chosen as a case study. The ecological damage was analyzed by 3S technology, field investigation and from chemical data. The derivative spectra of the diagnostic absorption bands are derived from the spectra measured in the field and used as characteristic spectral variables. A correlation analysis was conducted for the nitrogen content of the vegetation samples and the fast derivative spectrum and the estimation model of nitrogen content established by a multiple stepwise linear regression method. The spatial distribution of nitrogen content was extracted by a parameter mapping method from the Hyperion data which revealed the distribution of the nitrogen content. In addition, the estimation model was evaluated for two evaluation indicators which are important for the precision of the model. Experimental results indicate that by linear regression and parameter mapping, the estimation model precision was Very high. The coefficient of determination, R2, was 0.795 and the standard deviation of residual (SDR) 0.19. The nitrogen content of most samples was about 1.03% and the nitrogen content in the study site seems inversely proportional to the distance from the piles of coal waste. Therefore, we can conclude that inversely modeling nitrogen content by hyper-spectral remote sensing in exhausted coal mining sites is feasible and our study can be taken as reference in species selection and in subseauent management and maintenance in ecological restoration.展开更多
The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedbac...The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedback linear estimation algorithm is used to estimate the time-varying parameters of the ARMA model. This algorithm includes 2 linear least squares estimations and a linear filter. The influence of the order of basis time-(varying) functions on parameters estimation is analyzed. The method has the advantage of simple, saving computation time and storage space. Theoretical analysis and experimental results show the validity of this method.展开更多
文摘In this paper we consider the empirical Bayes (EB) estimation problem for estimable function of regression coefficient in a multiple linear regression model Y=Xβ+e. where e with given β has a multivariate standard normal distribution. We get the EB estimators by using kernel estimation of multivariate density function and its first order partial derivatives. It is shown that the convergence rates of the EB estimators are under the condition where an integer k > 1 . is an arbitrary small number and m is the dimension of the vector Y.
基金Research supported By AFOSC, USA, under Contract F49620-85-0008oy NNSFC of China.
文摘This paper uses a grouping-adjusting procedure to the data from a median linear regression model, and estimtes the regression coefficients by the method of weighted least squares. This method simplifies computation and in the meantime, preserves the same asymptotic normal distribution for the estimator, as in the ordinary minimum L_1-norm estimates.
基金supported by the Natural Sciences and Engineering Research Council of Canadathe National Natural Science Foundation of China+2 种基金the Doctorial Fund of Education Ministry of Chinasupported by the Natural Sciences and Engineering Research Council of Canadasupported by the National Natural Science Foundation of China
文摘Recursive algorithms are very useful for computing M-estimators of regression coefficients and scatter parameters. In this article, it is shown that for a nondecreasing ul (t), under some mild conditions the recursive M-estimators of regression coefficients and scatter parameters are strongly consistent and the recursive M-estimator of the regression coefficients is also asymptotically normal distributed. Furthermore, optimal recursive M-estimators, asymptotic efficiencies of recursive M-estimators and asymptotic relative efficiencies between recursive M-estimators of regression coefficients are studied.
文摘Consider the regression model, n. Here the design points (xi,ti) are known and nonrandom, and ei are random errors. The family of nonparametric estimates of g() including known estimates proposed by Gasser & Muller[1] is also proposed to be a class of new nearest neighbor estimates of g(). Baed on the nonparametric regression procedures, we investigate a statistic for testing H0:g=0, and obtain some aspoptotic results about estimates.
文摘In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective.
基金funded by Asia-Pacific Forests Net(APFNET/2010/FPF/001)National Natural Science Foundation of China(Grant No.31400552)Forestry industry research special funds for public welfare projects(201404402)
文摘The purpose of this study was to determine a suitable model for investigating the effects of climate factors on the area burned by forest fire in the Tahe forest region, Daxing'an Mountains, in northeast China. The response variables were the area burned by lightning- caused fire, human-caused fire, and total burned area. The predictor variables were nine climate variables collected from the local weather station. Three regression models were utilized, including multiple linear regression, log- linear model (log-transformation on both response and predictor variables), and gamma-generalized linear model. The goodness-of-fit of the models were compared based on model fitting statistics such as R2, AIC, and RMSE. The results revealed that the gamma-generalized linear model was generally superior to both multiple linear regressionmodel and log-linear model for fitting the fire data. Further, the best models were selected based on the criteria that the climate variables were statistically significant at at = 0.05. The gamma best models indicated that maximum wind speed, precipitation, and days that rainfall greater than 0.1 mm had significant impacts on the area burned by the lightning-caused fire, while the mean temperature and minimum relative humidity were the .main drivers of the burned area caused by human activities. Overall, the total burned area by forest fire was significantly influenced by days that rainfall greater than 0.1 mm and minimum rela- tive humidity, indicating that the moisture condition of forest stands determine the burned area by forest fire.
基金supported by the National Natural Science Funds for Distinguished Young Scholar (70825004)National Natural Science Foundation of China (NSFC) (10731010 and 10628104)+3 种基金the National Basic Research Program (2007CB814902)Creative Research Groups of China (10721101)Leading Academic Discipline Program, the 10th five year plan of 211 Project for Shanghai University of Finance and Economics211 Project for Shanghai University of Financeand Economics (the 3rd phase)
文摘This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively.
基金funded by the National Key Research and Development Program of China(No.2022YFD2200503-02)。
文摘The diameter distribution function(DDF)is a crucial tool for accurately predicting stand carbon storage(CS).The current key issue,however,is how to construct a high-precision DDF based on stand factors,site quality,and aridity index to predict stand CS in multi-species mixed forests with complex structures.This study used data from70 survey plots for mixed broadleaf Populus davidiana and Betula platyphylla forests in the Mulan Rangeland State Forest,Hebei Province,China,to construct the DDF based on maximum likelihood estimation and finite mixture model(FMM).Ordinary least squares(OLS),linear seemingly unrelated regression(LSUR),and back propagation neural network(BPNN)were used to investigate the influences of stand factors,site quality,and aridity index on the shape and scale parameters of DDF and predicted stand CS of mixed broadleaf forests.The results showed that FMM accurately described the stand-level diameter distribution of the mixed P.davidiana and B.platyphylla forests;whereas the Weibull function constructed by MLE was more accurate in describing species-level diameter distribution.The combined variable of quadratic mean diameter(Dq),stand basal area(BA),and site quality improved the accuracy of the shape parameter models of FMM;the combined variable of Dq,BA,and De Martonne aridity index improved the accuracy of the scale parameter models.Compared to OLS and LSUR,the BPNN had higher accuracy in the re-parameterization process of FMM.OLS,LSUR,and BPNN overestimated the CS of P.davidiana but underestimated the CS of B.platyphylla in the large diameter classes(DBH≥18 cm).BPNN accurately estimated stand-and species-level CS,but it was more suitable for estimating stand-level CS compared to species-level CS,thereby providing a scientific basis for the optimization of stand structure and assessment of carbon sequestration capacity in mixed broadleaf forests.
基金Funding from The Scientific and Technological Research Council of Turkey(Project No:2130026)is gratefully acknowledged
文摘Background: Leaf Area Index(LAI) is an important parameter used in monitoring and modeling of forest ecosystems. The aim of this study was to evaluate performance of the artificial neural network(ANN) models to predict the LAI by comparing the regression analysis models as the classical method in these pure and even-aged Crimean pine forest stands.Methods: One hundred eight temporary sample plots were collected from Crimean pine forest stands to estimate stand parameters. Each sample plot was imaged with hemispherical photographs to detect the LAI. The partial correlation analysis was used to assess the relationships between the stand LAI values and stand parameters, and the multivariate linear regression analysis was used to predict the LAI from stand parameters. Different artificial neural network models comprising different number of neuron and transfer functions were trained and used to predict the LAI of forest stands.Results: The correlation coefficients between LAI and stand parameters(stand number of trees, basal area, the quadratic mean diameter, stand density and stand age) were significant at the level of 0.01. The stand age, number of trees, site index, and basal area were independent parameters in the most successful regression model predicted LAI values using stand parameters(R_(adj)~2=0.5431). As corresponding method to predict the interactions between the stand LAI values and stand parameters, the neural network architecture based on the RBF 4-19-1 with Gaussian activation function in hidden layer and the identity activation function in output layer performed better in predicting LAI(SSE(12.1040), MSE(0.1223), RMSE(0.3497), AIC(0.1040), BIC(-77.7310) and R^2(0.6392)) compared to the other studied techniques.Conclusion: The ANN outperformed the multivariate regression techniques in predicting LAI from stand parameters. The ANN models, developed in this study, may aid in making forest management planning in study forest stands.
文摘Various nodes,logistics,capital flows,and information flows are required to make systematic decisions concerning the operation of an integrated coal supply system. We describe a quantitative analysis of such a system. A dynamic optimization model of the supply chain is developed. It has achieved optimal system profit under conditions guaranteeing a certain level of customer satisfaction. Applying this model to coal production of the Xuzhou coal mines allows recommendations for a more systematic use of washing and processing,transportation and sale resources for commercial coal production to be made. The results show that this model,which is scientific and effective,has an important value for making reasonable decisions related to complex coal enterprises.
文摘Monitoring and evaluating the nutritional status of vegetation under stress from exhausted coal mining sites by hyper-spectral remote sensing is important in future ecological restoration engineering. The Wangpingcun coal mine, located in the Mentougou district of Beijing, was chosen as a case study. The ecological damage was analyzed by 3S technology, field investigation and from chemical data. The derivative spectra of the diagnostic absorption bands are derived from the spectra measured in the field and used as characteristic spectral variables. A correlation analysis was conducted for the nitrogen content of the vegetation samples and the fast derivative spectrum and the estimation model of nitrogen content established by a multiple stepwise linear regression method. The spatial distribution of nitrogen content was extracted by a parameter mapping method from the Hyperion data which revealed the distribution of the nitrogen content. In addition, the estimation model was evaluated for two evaluation indicators which are important for the precision of the model. Experimental results indicate that by linear regression and parameter mapping, the estimation model precision was Very high. The coefficient of determination, R2, was 0.795 and the standard deviation of residual (SDR) 0.19. The nitrogen content of most samples was about 1.03% and the nitrogen content in the study site seems inversely proportional to the distance from the piles of coal waste. Therefore, we can conclude that inversely modeling nitrogen content by hyper-spectral remote sensing in exhausted coal mining sites is feasible and our study can be taken as reference in species selection and in subseauent management and maintenance in ecological restoration.
文摘The auto-regressive moving-average (ARMA) model with time-varying parameters is analyzed. The time-varying parameters are assumed to be a linear combination of a set of basis time-varying functions, and the feedback linear estimation algorithm is used to estimate the time-varying parameters of the ARMA model. This algorithm includes 2 linear least squares estimations and a linear filter. The influence of the order of basis time-(varying) functions on parameters estimation is analyzed. The method has the advantage of simple, saving computation time and storage space. Theoretical analysis and experimental results show the validity of this method.