期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于Sentinel-1A影像和一维CNN的中国南方生长季早期作物种类识别 被引量:17
1
作者 赵红伟 陈仲新 +1 位作者 姜浩 刘佳 《农业工程学报》 EI CAS CSCD 北大核心 2020年第3期169-177,共9页
作物的早期识别对粮食安全至关重要。在以往的研究中,中国南方作物早期识别面临的主要挑战包括:1)云层覆盖时间长、地块尺寸小且作物类型丰富;2)缺少高时空分辨率合成孔径雷达(synthetic aperture radar,SAR)数据。欧洲航天局Sentinel-1... 作物的早期识别对粮食安全至关重要。在以往的研究中,中国南方作物早期识别面临的主要挑战包括:1)云层覆盖时间长、地块尺寸小且作物类型丰富;2)缺少高时空分辨率合成孔径雷达(synthetic aperture radar,SAR)数据。欧洲航天局Sentinel-1A(S1A)卫星提供的SAR图像具有12 d的重访周期,空间分辨率达10 m,为中国南方作物早期识别提供了新的机遇。为在作物早期识别中充分利用S1A影像的时间特征,本研究提出一维卷积神经网络(one-dimensional convolutional neural network,1D CNN)的增量训练方法:首先利用生长季内全时间序列数据来训练1D CNN的超参数,称为分类器;然后从生长季内第一次S1A影像获取开始,在每个数据获取时间点输入该点之前(包括该点)生长季内所有数据训练分类器在该点的其他参数。以中国湛江地区2017年生长季为研究实例,分别基于VV、VH和VH+VV,评估不同极化数据在该地区的作物分类效果。为验证该方法的有效性,本研究同时应用经典的随机森林(random forest,RF)模型对研究区进行试验。结果表明:1)基于VH+VV、VH和VV极化数据的分类精度依次降低,其中,基于VH+VV后向散射系数时间序列1D CNN和RF测试结果的Kappa系数最大值分别为0.924和0.916,说明S1A时间序列数据在该地区作物分类任务中有效;2)在研究区域内2017年生长季早期,基于1D CNN和RF的5种作物的F-measure均达到0.85及以上,说明本文所构建的1D CNN在该地区主要作物早期分类任务中有效。研究结果证明,针对中国南方作物早期分类,本研究提出的1D CNN训练方案可行。研究结果可为深度学习在作物早期分类任务中的应用提供参考。 展开更多
关键词 作物 遥感 识别 早期 一维卷积神经网络(1D CNN) 深度学习 合成孔径雷达 Sentinel-1
在线阅读 下载PDF
Study on the prediction and inverse prediction of detonation properties based on deep learning 被引量:4
2
作者 Zi-hang Yang Ji-li Rong Zi-tong Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期18-30,共13页
The accurate and efficient prediction of explosive detonation properties has important engineering significance for weapon design.Traditional methods for predicting detonation performance include empirical formulas,eq... The accurate and efficient prediction of explosive detonation properties has important engineering significance for weapon design.Traditional methods for predicting detonation performance include empirical formulas,equations of state,and quantum chemical calculation methods.In recent years,with the development of computer performance and deep learning methods,researchers have begun to apply deep learning methods to the prediction of explosive detonation performance.The deep learning method has the advantage of simple and rapid prediction of explosive detonation properties.However,some problems remain in the study of detonation properties based on deep learning.For example,there are few studies on the prediction of mixed explosives,on the prediction of the parameters of the equation of state of explosives,and on the application of explosive properties to predict the formulation of explosives.Based on an artificial neural network model and a one-dimensional convolutional neural network model,three improved deep learning models were established in this work with the aim of solving these problems.The training data for these models,called the detonation parameters prediction model,JWL equation of state(EOS)prediction model,and inverse prediction model,was obtained through the KHT thermochemical code.After training,the model was tested for overfitting using the validation-set test.Through the model-accuracy test,the prediction accuracy of the model for real explosive formulations was tested by comparing the predicted value with the reference value.The results show that the model errors were within 10%and 3%for the prediction of detonation pressure and detonation velocity,respectively.The accuracy refers to the prediction of tested explosive formulations which consist of TNT,RDX and HMX.For the prediction of the equation of state for explosives,the correlation coefficient between the prediction and the reference curves was above 0.99.For the prediction of the inverse prediction model,the prediction error of the explosive equation was within 9%.This indicates that the models have utility in engineering. 展开更多
关键词 deep learning Detonation properties KHT thermochemical Code JWL equation of states Artificial neural network one-dimensional convolutional neural network
在线阅读 下载PDF
卷积神经网络在高分辨率影像分类中的应用 被引量:4
3
作者 李贤江 陈佑启 +4 位作者 邹金秋 石淑芹 郭涛 蔡为民 陈浩 《农业大数据学报》 2019年第1期67-77,共11页
【目的】将CNN应用于高分辨率遥感影像的实际分类中,并与传统的分类方法进行对比分析,揭示出不同分类方法在高分辨率遥感影像中的分类精度和适用性问题。【方法】采用最大似然、平行六面体、 K-Means均值聚类和传统神经网络等四类常用的... 【目的】将CNN应用于高分辨率遥感影像的实际分类中,并与传统的分类方法进行对比分析,揭示出不同分类方法在高分辨率遥感影像中的分类精度和适用性问题。【方法】采用最大似然、平行六面体、 K-Means均值聚类和传统神经网络等四类常用的ENVI传统分类方法以及CNN分类法,并利用混淆矩阵和空间像元误差分析对不同分类方法的分类结果进行精度评价。【结果】根据分类精度对比分析发现在传统的四种ENVI分类方法中,传统神经网络和最大似然法的分类精度相对较好, K-Means均值聚类和平行六面体的分类精度相对较差, CNN的分类精度整体上要高于ENVI传统分类方法的精度。【结论】CNN在高分辨率遥感影像分类中能够较好地提取地物信息和地物的轮廓特征,在高分辨率遥感影像分类中具有良好的适用性。 展开更多
关键词 高分一号 卷积神经网络 遥感 深度学习
在线阅读 下载PDF
基于一维卷积神经网络的结构损伤识别 被引量:23
4
作者 骆勇鹏 王林堃 +1 位作者 廖飞宇 刘景良 《地震工程与工程振动》 CSCD 北大核心 2021年第4期145-156,共12页
传统结构损伤识别需对采集数据进行分析,提取相应特征进行损伤诊断。特征提取过程需消耗大量的计算成本,无法满足结构健康监测在线损伤识别的需求。为提高损伤识别的计算效率和自动化程度,提出基于一维卷积神经网络的结构损伤识别方法,... 传统结构损伤识别需对采集数据进行分析,提取相应特征进行损伤诊断。特征提取过程需消耗大量的计算成本,无法满足结构健康监测在线损伤识别的需求。为提高损伤识别的计算效率和自动化程度,提出基于一维卷积神经网络的结构损伤识别方法,其特点是可以直接从原始振动信号中自主学习损伤特征,并准确快速地识别结构的损伤位置和损伤程度。采用简支梁数值模型和IABMAS BHM Benchmark数值模型验证所提方法的有效性。数值结果表明:所建立的一维卷积神经网络模型能够准确识别结构的损伤位置和损伤程度,具备一定的抗噪性能,整体模型收敛快,对单条样本测试延迟低。设计了钢框架结构损伤识别试验,采用所提方法对框架结构的损伤情况进行了识别。分析结果表明:所提方法可准确识别结构损伤程度及损伤类别,测试集准确率为100%,验证了方法在实际结构损伤识别的应用可行性。 展开更多
关键词 结构健康监测 损伤识别 振动响应 深度学习 一维卷积神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部