期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Remaining Useful Life Prediction of Aeroengine Based on Principal Component Analysis and One-Dimensional Convolutional Neural Network 被引量:5
1
作者 LYU Defeng HU Yuwen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期867-875,共9页
In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based... In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness. 展开更多
关键词 AEROENGINE remaining useful life(RUL) principal component analysis(PCA) one-dimensional convolution neural network(1D-CNN) time series prediction state parameters
在线阅读 下载PDF
Study on the prediction and inverse prediction of detonation properties based on deep learning 被引量:2
2
作者 Zi-hang Yang Ji-li Rong Zi-tong Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期18-30,共13页
The accurate and efficient prediction of explosive detonation properties has important engineering significance for weapon design.Traditional methods for predicting detonation performance include empirical formulas,eq... The accurate and efficient prediction of explosive detonation properties has important engineering significance for weapon design.Traditional methods for predicting detonation performance include empirical formulas,equations of state,and quantum chemical calculation methods.In recent years,with the development of computer performance and deep learning methods,researchers have begun to apply deep learning methods to the prediction of explosive detonation performance.The deep learning method has the advantage of simple and rapid prediction of explosive detonation properties.However,some problems remain in the study of detonation properties based on deep learning.For example,there are few studies on the prediction of mixed explosives,on the prediction of the parameters of the equation of state of explosives,and on the application of explosive properties to predict the formulation of explosives.Based on an artificial neural network model and a one-dimensional convolutional neural network model,three improved deep learning models were established in this work with the aim of solving these problems.The training data for these models,called the detonation parameters prediction model,JWL equation of state(EOS)prediction model,and inverse prediction model,was obtained through the KHT thermochemical code.After training,the model was tested for overfitting using the validation-set test.Through the model-accuracy test,the prediction accuracy of the model for real explosive formulations was tested by comparing the predicted value with the reference value.The results show that the model errors were within 10%and 3%for the prediction of detonation pressure and detonation velocity,respectively.The accuracy refers to the prediction of tested explosive formulations which consist of TNT,RDX and HMX.For the prediction of the equation of state for explosives,the correlation coefficient between the prediction and the reference curves was above 0.99.For the prediction of the inverse prediction model,the prediction error of the explosive equation was within 9%.This indicates that the models have utility in engineering. 展开更多
关键词 Deep learning Detonation properties KHT thermochemical Code JWL equation of states Artificial neural network one-dimensional convolutional neural network
在线阅读 下载PDF
Incremental Learning of Radio Modulation Classification Based on Sample Recall 被引量:2
3
作者 Yan Zhao Shichuan Chen +4 位作者 Tao Chen Weiguo Shen Shilian Zheng Zhijin Zhao Xiaoniu Yang 《China Communications》 SCIE CSCD 2023年第7期258-272,共15页
Radio modulation classification has always been an important technology in the field of communications.The difficulty of incremental learning in radio modulation classification is that learning new tasks will lead to ... Radio modulation classification has always been an important technology in the field of communications.The difficulty of incremental learning in radio modulation classification is that learning new tasks will lead to catastrophic forgetting of old tasks.In this paper,we propose a sample memory and recall framework for incremental learning of radio modulation classification.For data with different signal-to-noise ratios,we use a partial memory strategy by selecting appropriate samples for memorizing.We compare the performance of our proposed method with three baselines through a large number of simulation experiments.Results show that our method achieves far higher classification accuracy than finetuning method and feature extraction method.Furthermore,it performs closely to joint training method which uses all old data in terms of classification accuracy which validates the effectiveness of our method against catastrophic forgetting. 展开更多
关键词 radio modulation classification incremen-tal learning deep learning convolutional neural net-work.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部