期刊文献+
共找到775篇文章
< 1 2 39 >
每页显示 20 50 100
Small-time scale network traffic prediction based on a local support vector machine regression model 被引量:10
1
作者 孟庆芳 陈月辉 彭玉华 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第6期2194-2199,共6页
In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the... In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements. 展开更多
关键词 network traffic small-time scale nonlinear time series analysis support vector machine regression model
在线阅读 下载PDF
Casing life prediction using Borda and support vector machine methods 被引量:4
2
作者 Xu Zhiqian Yan Xiangzhen Yang Xiujuan 《Petroleum Science》 SCIE CAS CSCD 2010年第3期416-421,共6页
Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts ... Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts for failure modes are obtained with the Borda method. The risk indexes of failure modes are derived from the Borda matrix. Based on the support vector machine (SVM), a casing life prediction model is established. In the prediction model, eight risk indexes are defined as input vectors and casing life is defined as the output vector. The ideal model parameters are determined with the training set from 19 wells with casing failure. The casing life prediction software is developed with the SVM model as a predictor. The residual life of 60 wells with casing failure is predicted with the software, and then compared with the actual casing life. The comparison results show that the casing life prediction software with the SVM model has high accuracy. 展开更多
关键词 support vector machine method Borda method life prediction model failure modes RISKFACTORS
在线阅读 下载PDF
An Eigen-Normal Approach for 3D Mesh Watermarking Using Support Vector Machines
3
作者 Rakhi Motwani Mukesh Motwani +1 位作者 Frederick Harris Sergiu Dascalu 《Journal of Electronic Science and Technology》 CAS 2010年第3期237-243,共7页
The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been ex... The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been explored in the 3D watermarking domain. The proposed approach utilizes SVM as a binary classifier for the selection of vertices for watermark embedding. The SVM is trained with feature vectors derived from the angular difference between the eigen normal and surface normals of a 1-ring neighborhood of vertices taken from normalized 3D mesh models. The SVM learns to classify vertices as appropriate or inappropriate candidates for modification in order to accommodate the watermark. Experimental results verify that the proposed algorithm is imperceptible and robust against attacks such as mesh smoothing, cropping and noise addition. 展开更多
关键词 3D mesh models support vector machine watermarking.
在线阅读 下载PDF
融合长短期记忆网络和支持向量机的Wi-Fi室内入侵检测
4
作者 王长浩 张懿祥 +1 位作者 张强 郝嘉耀 《电子技术应用》 2025年第5期68-76,共9页
基于Wi-Fi感知的室内入侵检测系统是一种无需在移动实体上附加任何设备即可检测移动实体的系统。针对目前检测方法忽略复杂的幅度变化和相位变化引起的潜在影响,提出了融合长短期记忆网络和支持向量机的室内入侵检测新方法LSID(Long Sho... 基于Wi-Fi感知的室内入侵检测系统是一种无需在移动实体上附加任何设备即可检测移动实体的系统。针对目前检测方法忽略复杂的幅度变化和相位变化引起的潜在影响,提出了融合长短期记忆网络和支持向量机的室内入侵检测新方法LSID(Long Short-Term Memory and Support Vector Machine Intrusion Detection)。LSID方法采用一种新的特征值建模方式,利用长短期记忆网络可以学习到时序特征并且能捕捉时序信号长期的依赖关系,将信道状态信息真实值与长短期记忆神经网络的预测值之差作为特征值,能更准确地捕捉入侵者对信号状态信息的影响。该检测方法在学校实验室环境下经过多次实验验证,最终检测准确率达到99.21%,通过多组实验比对,结果显示LSID方法具有有效性和可行性,相比于其他入侵检测方法准确率明显提升。 展开更多
关键词 室内入侵 长短期记忆网络 支持向量机 特征值建模
在线阅读 下载PDF
ESSENTIAL RELATIONSHIP BETWEEN DOMAIN-BASED ONE-CLASS CLASSIFIERS AND DENSITY ESTIMATION 被引量:2
5
作者 陈斌 李斌 +1 位作者 冯爱民 潘志松 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期275-281,共7页
One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of t... One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of the Gaussian kernel, OCSVM and SVDD are firstly unified into the framework of kernel density estimation, and the essential relationship between them is explicitly revealed. Then the result proves that the density estimation induced by OCSVM or SVDD is in agreement with the true density. Meanwhile, it can also reduce the integrated squared error (ISE). Finally, experiments on several simulated datasets verify the revealed relationships. 展开更多
关键词 one-class support vector machine(OCSVM) support vector data description(SVDD) kernel density estimation
在线阅读 下载PDF
基于红外视觉特征融合的矿井外因火灾监测方法
6
作者 李晓宇 范伟强 +1 位作者 刘毅 霍跃华 《矿业科学学报》 北大核心 2025年第1期116-124,共9页
为了解决矿井复杂环境下外因火灾监测误报率和漏报率较高的问题,提出基于红外视觉特征融合的矿井外因火灾监测算法。首先,改进红外小目标检测的局部对比度度量(LCM)模型,提高早期火灾目标的显著度,进而分割出火灾疑似区域;其次,通过分... 为了解决矿井复杂环境下外因火灾监测误报率和漏报率较高的问题,提出基于红外视觉特征融合的矿井外因火灾监测算法。首先,改进红外小目标检测的局部对比度度量(LCM)模型,提高早期火灾目标的显著度,进而分割出火灾疑似区域;其次,通过分析不同监视场景下外因火灾和主要干扰热源在热红外图像序列中的视觉特征,选出抗干扰能力强的火灾显著特征;然后,优选火灾显著特征提取方法和相似度估计策略,以获取热红外图像序列中火灾疑似区域的主要视觉特征,并构建火灾特征向量;最后,通过建立特征向量集,构建基于支持向量机(SVM)的矿井外因火灾检测模型,对所提算法进行验证。结果表明:所提算法不仅能监测不同场景下的外因火灾,还能够监测远距离和早期阶段的外因火灾,其正确率和检测率分别达到96.93%、96.24%,误检率低至2.56%;相较于对比算法,所提算法在火灾监测的准确率、误报率和漏报率方面均有较大的改善。 展开更多
关键词 矿井外因火灾 红外视觉特征 局部对比度度量(LCM)模型 特征向量 支持向量机(SVM)
在线阅读 下载PDF
基于支持向量回归(SVR)的马尾松木材脱脂率预测
7
作者 郭佳伦 钟浩珉 +1 位作者 赵俊博 陈瑶 《北京林业大学学报》 北大核心 2025年第3期151-161,共11页
【目的】脱脂处理是提升松木制品性能的重要手段,但传统脱脂率检测方法耗时且破坏试样。本研究旨在探索一种快速、无损的脱脂率检测方法,基于木材表面颜色变化,利用支持向量回归(SVR)构建脱脂率预测模型。【方法】采用氨气-水蒸气在高... 【目的】脱脂处理是提升松木制品性能的重要手段,但传统脱脂率检测方法耗时且破坏试样。本研究旨在探索一种快速、无损的脱脂率检测方法,基于木材表面颜色变化,利用支持向量回归(SVR)构建脱脂率预测模型。【方法】采用氨气-水蒸气在高温条件下对马尾松木材进行处理,分析不同条件对木材表面颜色参数和脱脂率的影响,探讨其相关性。利用3种不同的核函数(多项式核函数、Sigmoid核函数、径向基函数)构建基于SVR的脱脂率预测模型,并通过比较选择最优模型。【结果】经氨气-水蒸气热处理脱脂后,马尾松表面明度(L^(*))和黄蓝指数(b^(*))低于未处理木材,红绿指数(a^(*))则高于未处理木材。随着氨水质量分数和处理温度的增加,L^(*)、a^(*)和b^(*)呈逐渐降低趋势,总色差(ΔE^(*))逐渐增大,脱脂率随之提高。在180℃、较高氨水质量分数的处理条件下,ΔE^(*)达到最大值58.89,脱脂率达到最高值70.00%。颜色参数与脱脂率呈局部二次函数关系,相关系数最高为0.713。在以径向基函数为核函数的SVR模型中,预测含脂率和脱脂率的均方根误差分别为0.523和4.315,决定系数分别为0.847和0.823,该预测模型可应用于脱脂率检测的前期筛选。【结论】本研究成功构建了基于SVR的马尾松木材脱脂率预测模型。该模型在脱脂率检测的前期筛选中具有一定的应用价值,能够在一定程度上实现检测过程的快速、简便和无损化。本研究为马尾松木材脱脂率检测的效率提升和质量改进提供了一种新的方法。 展开更多
关键词 支持向量回归 机器学习 预测模型 脱脂 马尾松 颜色参数
在线阅读 下载PDF
4种机器学习算法构建的临床预测模型在预测结直肠癌患者术前营养不良中的价值
8
作者 刘瑶 刘娟 葛玉红 《护士进修杂志》 2025年第9期939-945,967,共8页
目的采用4种机器学习算法分别构建结直肠癌患者术前营养不良的临床风险预测模型,探讨其预测价值。方法回顾性收集2023年1月—2024年5月在新疆医科大学附属肿瘤医院胃肠外科就诊的412例结直肠癌患者的术前资料;按7∶3的比例随机分为训练... 目的采用4种机器学习算法分别构建结直肠癌患者术前营养不良的临床风险预测模型,探讨其预测价值。方法回顾性收集2023年1月—2024年5月在新疆医科大学附属肿瘤医院胃肠外科就诊的412例结直肠癌患者的术前资料;按7∶3的比例随机分为训练集(n=288)和验证集(n=124),采用单因素分析及二元logistic回归分析筛选出术前营养不良的预测因子;基于逻辑回归(LR)、支持向量机(SVM)、轻量级梯度提升(LightGBM)、多层感知机(MLP)4种机器学习算法分别构建结直肠癌患者术前营养不良风险预测模型,绘制ROC曲线评价4种算法模型预测效能,通过Delong检验比较4种模型的AUC差异。选择最优算法模型,采用校准曲线和临床决策曲线(DCA曲线)进行验证。结果(1)结直肠癌患者术前营养不良发生率为33.7%,年龄、Braden评分是其独立危险因素;(2)训练集中LightGBM算法模型预测结直肠癌患者术前发生营养不良的AUC高于LR、SVM、MLP算法模型(0.941 VS 0.874、0.830、0.831);(3)ROC曲线结果提示,LightGBM算法模型验证集中预测结直肠癌患者术前发生营养不良的AUC为0.926(95%CI:0.882~0.969);校准曲线显示,LightGBM算法模型预测结直肠癌患者术前发生营养不良的曲线与实际发生营养不良一致性良好;DCA曲线结果显示,LightGBM算法模型在阈值概率区间为0.16~0.79可以提供显著临床净收益。结论基于LightGBM算法构建的临床预测模型在预测结直肠癌患者术前发生营养不良中有较高价值,可以为临床人员实施营养管理提供参考。 展开更多
关键词 结直肠肿瘤 营养不良 机器学习 预测模型 逻辑回归 支持向量机 轻量级梯度提升 多层感知机
在线阅读 下载PDF
基于SVM-SARIMA-LSTM模型的城市用水量实时预测
9
作者 李轩 吴永强 +2 位作者 王佳伟 杨伟超 张天洋 《水电能源科学》 北大核心 2025年第3期36-39,6,共5页
为提高气象波动下城市用水量预测精度,通过季节性分解的趋势—季节性—残差程序(STL)将城市时用水量分解为趋势分量、季节性分量和残差分量3部分,使用季节性自回归移动平均模型(SARIMA)对季节性部分进行捕捉,利用支持向量机(SVM)提取趋... 为提高气象波动下城市用水量预测精度,通过季节性分解的趋势—季节性—残差程序(STL)将城市时用水量分解为趋势分量、季节性分量和残差分量3部分,使用季节性自回归移动平均模型(SARIMA)对季节性部分进行捕捉,利用支持向量机(SVM)提取趋势部分与气温、降水、风速、气压和相对湿度5个气象因素之间的关系,利用长短时记忆网络(LSTM)对波动性明显的残差部分进行关系捕捉,构建了SVM-SARIMA-LSTM用水量实时预测模型,并利用衡水市3个月时用水量数据和气象数据训练SVM-SARIMA-LSTM模型,以随后1周的实测数据作为验证集对模型预测性能进行评估。结果表明,SVM-SARIMA-LSTM模型的平均绝对百分比误差(E_(MAP))比SARIMA模型低4.502%,均方根误差(E_(RMSE))降低了39.084%,确定系数R^(2)提高了9.965%,最大绝对误差(E_(maxA))减小了55.946%,具有较好的应用价值。所建模型通过整合关键气象因素,准确地捕捉到城市用水量的季节性趋势及非季节性波动,展现了优良的泛化性。 展开更多
关键词 SARIMA模型 支持向量机 长短时记忆神经网络 SVM-SARIMA-LSTM模型 STL分解程序 气象因素 用水量预测
在线阅读 下载PDF
基于支持向量机的某平原河网水质遥感反演研究
10
作者 张昂 张艳军 《云南水力发电》 2025年第3期22-24,共3页
利用WorldView-Ⅱ遥感影像和有限的准同步实地监测数据,结合水体组分的光谱特征,建立了某平原河水质反演的支持向量机模型。通过遥感影像反演了溶解氧(DO)、氨氮(NH3-N)、总磷(TP)、总氮(TN)和总有机碳(TOC)的浓度,反演精度较高,相对误... 利用WorldView-Ⅱ遥感影像和有限的准同步实地监测数据,结合水体组分的光谱特征,建立了某平原河水质反演的支持向量机模型。通过遥感影像反演了溶解氧(DO)、氨氮(NH3-N)、总磷(TP)、总氮(TN)和总有机碳(TOC)的浓度,反演精度较高,相对误差基本在20%以下,同时分析了支持向量机模型误差的来源及改进措施。将模型用于2008-12-20该平原河网水体,所得结果较客观地反应了水质参数的空间分布规律,表明了利用遥感影像进行城市内河水质监测的可行性和应用前景。 展开更多
关键词 WorldView-Ⅱ遥感影像 水质反演 支持向量机模型
在线阅读 下载PDF
基于机器学习方法的“以电折水”系数研究
11
作者 冯佳伟 姜宁 +2 位作者 刘岩 董万里 杨莹 《黑龙江水利科技》 2025年第3期139-144,共6页
目前“以电折水”作为农业地下水开采量的间接计量方法,估算地区农灌机井“以电折水”系数对于地区地下水开采量准确计量至关重要。当前多数研究采用在灌溉机井出水口安装计量设施,直接测量机井单位时间内的抽水量与耗电量来计算“以电... 目前“以电折水”作为农业地下水开采量的间接计量方法,估算地区农灌机井“以电折水”系数对于地区地下水开采量准确计量至关重要。当前多数研究采用在灌溉机井出水口安装计量设施,直接测量机井单位时间内的抽水量与耗电量来计算“以电折水”系数的具体数值。相比之下,利用数学模型并结合相关影响因素对“以电折水”系数进行预测的研究较为稀缺。文章针对“以电折水”系数进行预测及分析研究,采用平均相对误差(MRE)、均方根误差(RMSE)以及决定系数(R^(2))对不同模型的预测准确性展开对比。研究表明,采用平均值法预测的“以电折水”系数误差平均为30.33%,表明该方法下的预测结果与实际数据之间的拟合度较低,精度欠佳;而使用径向基函数神经网络模型时,预测误差则降低至11.23%;支持向量机回归模型展现了良好的预测性能,其预测误差仅为9.29%,显示出最佳的数据拟合度与最高的预测精度。 展开更多
关键词 “以电折水”系数 径向基函数神经网络模型 支持向量机回归模型 农业地下水开采计量
在线阅读 下载PDF
基于最小二乘支持向量机和车辆荷载监测数据的悬索桥吊索疲劳寿命预测
12
作者 曾国良 邓扬 《桥梁建设》 北大核心 2025年第1期41-48,共8页
针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数... 针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数据的相关性模型,建模过程中考虑LSSVM模型输入与输出的最优模式以及训练数据长度;建立1根吊索(以29号吊索为例)与其它吊索的日疲劳损伤之间的相关性模型,预测其它吊索的疲劳损伤;考虑日车流量和等效车总重的增长,进行吊索疲劳寿命预测。结果表明:对于29号吊索的4种LSSVM模型,模型Ⅳ的边界条件较其它3种模型更为合理,测试数据的平均相对误差低于模型Ⅰ~Ⅲ;该方法将日疲劳损伤与车辆荷载监测数据进行直接关联;LSSVM相关性模型的预测能力依赖于训练样本的数量,当训练数据长度为284 d时,模型Ⅳ的预测能力较强,其平均相对误差低于5.5%;同时考虑日车流量和等效车总重增长时,疲劳累积损伤显著增长。 展开更多
关键词 悬索桥 吊索 结构健康监测 车辆荷载 疲劳损伤 疲劳寿命 最小二乘支持向量机 相关性模型
在线阅读 下载PDF
基于区分性Model Pushing的语种识别方法 被引量:3
13
作者 刘伟伟 吉立新 +1 位作者 李邵梅 徐文 《电子技术应用》 北大核心 2012年第4期113-116,共4页
提出一种区分性Model Pushing方法,将SVM训练出的支持向量沿最优分类面的法线方向进行适当移动,增大不同语种间的区分性,然后将移动后的支持向量反向应用于GMM。该方法既保留了SVM的区分性信息,又利用了GMM在短时语音上的优势,同时增加... 提出一种区分性Model Pushing方法,将SVM训练出的支持向量沿最优分类面的法线方向进行适当移动,增大不同语种间的区分性,然后将移动后的支持向量反向应用于GMM。该方法既保留了SVM的区分性信息,又利用了GMM在短时语音上的优势,同时增加了目标与非目标的区分度。实验结果表明,区分性Model Pushing能有效地提高识别性能。 展开更多
关键词 语种识别 区分性model PUSHING 高斯混合模型超矢量-支持向量机 超平面法向量
在线阅读 下载PDF
Stand basal area modelling for Chinese fir plantations using an artificial neural network model 被引量:6
14
作者 Shaohui Che Xiaohong Tan +5 位作者 Congwei Xiang Jianjun Sun Xiaoyan Hu Xiongqing Zhang Aiguo Duan Jianguo Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第5期1641-1649,共9页
Artificial neural network models are a popular estimation tool for fitting nonlinear relationships because they require no assumptions about the form of the fitting function,non-Gaussian distributions,multicollinearit... Artificial neural network models are a popular estimation tool for fitting nonlinear relationships because they require no assumptions about the form of the fitting function,non-Gaussian distributions,multicollinearity,outliers and noise in the data.The problems of backpropagation models using artificial neural networks include determination of the structure of the network and overlearning courses.According to data from 1981 to 2008 from 15 permanent sample plots on Dagangshan Mountain in Jiangxi Province,a back-propagation artificial neural network model(BPANN)and a support vector machine model(SVM)for basal area of Chinese fir(Cunninghamia lanceolata)plantations were constructed using four kinds of prediction factors,including stand age,site index,surviving stem numbers and quadratic mean diameters.Artificial intelligence methods,especially SVM,could be effective in describing stand basal area growth of Chinese fir under different growth conditions with higher simulation precision than traditional regression models.SVM and the Chapman–Richards nonlinear mixed-effects model had less systematic bias than the BPANN. 展开更多
关键词 Chinese FIR BASAL area Artificial NEURAL network support vector machine Mixed-effect model
在线阅读 下载PDF
Hybrid connectionist model determines CO_2–oil swelling factor 被引量:2
15
作者 Mohammad Ali Ahmadi Sohrab Zendehboudi Lesley A. James 《Petroleum Science》 SCIE CAS CSCD 2018年第3期591-604,共14页
In-depth understanding of interactions between crude oil and CO2 provides insight into the CO2-based enhanced oil recovery(EOR) process design and simulation. When CO2 contacts crude oil, the dissolution process tak... In-depth understanding of interactions between crude oil and CO2 provides insight into the CO2-based enhanced oil recovery(EOR) process design and simulation. When CO2 contacts crude oil, the dissolution process takes place. This phenomenon results in the oil swelling, which depends on the temperature, pressure, and composition of the oil. The residual oil saturation in a CO2-based EOR process is inversely proportional to the oil swelling factor. Hence, it is important to estimate this influential parameter with high precision. The current study suggests the predictive model based on the least-squares support vector machine(LS-SVM) to calculate the CO2–oil swelling factor. A genetic algorithm is used to optimize hyperparameters(у and б^2) of the LS-SVM model. This model showed a high coefficient of determination(R^2= 0.9953) and a low value for the mean-squared error(MSE = 0.0003) based on the available experimental data while estimating the CO2–oil swelling factor. It was found that LS-SVM is a straightforward and accurate method to determine the CO2–oil swelling factor with negligible uncertainty. This method can be incorporated in commercial reservoir simulators to include the effect of the CO2–oil swelling factor when adequate experimental data are not available. 展开更多
关键词 C02 injection CO2 swelling Genetic algorithm Predictive model Least-squares support vector machine
在线阅读 下载PDF
Optimized Modeling Method for Unbalanced Data in High-Level Visual Semantic Concept Classification
16
作者 谭励 曹元大 +1 位作者 杨明华 贺巧艳 《Journal of Beijing Institute of Technology》 EI CAS 2009年第2期186-191,共6页
To solve the unbalanced data problems of learning models for semantic concepts, an optimized modeling method based on the posterior probability support vector machine (PPSVM) is presented. A neighborbased posterior ... To solve the unbalanced data problems of learning models for semantic concepts, an optimized modeling method based on the posterior probability support vector machine (PPSVM) is presented. A neighborbased posterior probability estimator for visual concepts is provided. The proposed method has been applied in a high-level visual semantic concept classification system and the experiment results show that it results in enhanced performance over the baseline SVM models, as well as in improved robustness with respect to high-level visual semantic concept classification. 展开更多
关键词 visual concept modeling posterior probability support vector machine unbalanced data
在线阅读 下载PDF
基于轴箱垂向振动加速度的地铁车轮失圆状态诊断方法 被引量:4
17
作者 梁红琴 姜进南 +5 位作者 陶功权 刘奇锋 卢纯 温泽峰 张楷 肖乾 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期431-443,共13页
首先,建立卷积神经网络、深度置信网络、支持向量机和以一维卷积神经网络全连接层特征为输入的支持向量机模型(1DCNN-SVM),对比上述模型在地铁车轮失圆状态分类识别上的效果;其次,利用代理模型构建轴箱垂向加速度均方根与车速和多边形... 首先,建立卷积神经网络、深度置信网络、支持向量机和以一维卷积神经网络全连接层特征为输入的支持向量机模型(1DCNN-SVM),对比上述模型在地铁车轮失圆状态分类识别上的效果;其次,利用代理模型构建轴箱垂向加速度均方根与车速和多边形磨耗幅值之间的映射关系;最后,通过智能优化算法逆向求解幅值,对比不同代理模型和智能优化算法在多边形磨耗幅值识别上的适用性。研究结果表明:1DCNN-SVM模型在正常、低阶多边形、高阶多边形、随机非圆车轮4类典型的车轮不圆度状态分类识别中取得99.82%的准确性,相比另外3种分类方法,其泛化性能和强化学习能力都具有明显的优势。在车轮多边形磨耗幅值识别方面,基于克里金模型(KSM)和粒子群算法(PSO)的波深识别模型具有更好的预测稳定性和时效性。 展开更多
关键词 车轮多边形磨耗 卷积神经网络 支持向量机 代理模型 智能优化算法
在线阅读 下载PDF
基于高维混合模型的离心泵叶轮子午面优化设计 被引量:2
18
作者 张金凤 俞鑫厚 +2 位作者 高淑瑜 曹璞钰 张文佳 《排灌机械工程学报》 CSCD 北大核心 2024年第4期325-332,共8页
为提高离心泵在设计工况下的运行效率和扬程,提出一种基于高维混合模型的离心泵叶轮优化设计方法.选取一台比转数为157的单级离心泵作为研究对象,通过CFturbo软件对优化变量进行参数化,然后结合数值模拟获得高维混合模型的训练集.在此... 为提高离心泵在设计工况下的运行效率和扬程,提出一种基于高维混合模型的离心泵叶轮优化设计方法.选取一台比转数为157的单级离心泵作为研究对象,通过CFturbo软件对优化变量进行参数化,然后结合数值模拟获得高维混合模型的训练集.在此基础上采用获取的训练集通过MATLAB机器学习得出效率、扬程与优化参数之间关于支持向量回归的高维模型,并采用遗传算法寻优.在设计工况下,所拟合的高维混合模型预测的效率和扬程值比原模型分别高1.5%和3.2 m,数值模拟验证优化方案的效率和扬程分别比原模型高0.9%和2.1 m.算例研究表明,将高维混合模型应用于离心泵叶轮的优化设计中可以实现快速寻优并提高离心泵水力性能. 展开更多
关键词 离心泵 遗传算法 优化设计 支持向量机 混合模型 数值模拟
在线阅读 下载PDF
Temperature Drift Modeling of FOG Based on LS-WSVM
19
作者 王立平 孔小梅 +3 位作者 付梦印 王美玲 张甲文 姜明 《Defence Technology(防务技术)》 SCIE EI CAS 2008年第3期188-190,共3页
Large temperature drift is an important factor for improving the performance of FOG.A trend term of temperature drift of FOG is obtained using stationary wavelets transform,and an FOG drift algorithm with least square... Large temperature drift is an important factor for improving the performance of FOG.A trend term of temperature drift of FOG is obtained using stationary wavelets transform,and an FOG drift algorithm with least squares wavelet support vector machine(LS-WSVM) is developed.The algorithm used Maxihat wavelet as a kernel function of LS-WSVM to establish an FOG drift model.It has better modeling precise than LS-WSVM model with Gauss kernel.Results indicate the efficiency of this algorithm of LS-WSVM. 展开更多
关键词 人工智能 自动推理 光学陀螺仪 输入设备
在线阅读 下载PDF
基于RS-PCA-SVM的建筑项目安全预测模型 被引量:1
20
作者 李永清 马亚冰 凤亚红 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第9期1243-1247,1261,共6页
为了减少建筑项目安全事故的发生,文章提出一种基于RS-PCA-SVM建筑项目安全组合预测模型,采用粗糙集理论(rough set,RS)对数据进行属性约简,剔除交叉和冗余信息,降低输入变量维数和计算复杂度,减少训练时间;利用主成分分析(principal co... 为了减少建筑项目安全事故的发生,文章提出一种基于RS-PCA-SVM建筑项目安全组合预测模型,采用粗糙集理论(rough set,RS)对数据进行属性约简,剔除交叉和冗余信息,降低输入变量维数和计算复杂度,减少训练时间;利用主成分分析(principal component analysis,PCA)法进行降维处理,除去贡献率较低的主成分,将剩余主成分作为支持向量机(support vector machine,SVM)的输入变量,并选择自适应权重粒子群优化算法(particle swarm optimization,PSO)优化SVM的参数,避免参数选择的盲目性。结果表明:该模型的平均预测准确率为93.78%,相比传统方法预测精度高、计算速度快。 展开更多
关键词 属性约简 主成分分析(PCA)法 支持向量机(SVM) 预测模型
在线阅读 下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部