In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the...In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.展开更多
Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts ...Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts for failure modes are obtained with the Borda method. The risk indexes of failure modes are derived from the Borda matrix. Based on the support vector machine (SVM), a casing life prediction model is established. In the prediction model, eight risk indexes are defined as input vectors and casing life is defined as the output vector. The ideal model parameters are determined with the training set from 19 wells with casing failure. The casing life prediction software is developed with the SVM model as a predictor. The residual life of 60 wells with casing failure is predicted with the software, and then compared with the actual casing life. The comparison results show that the casing life prediction software with the SVM model has high accuracy.展开更多
The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been ex...The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been explored in the 3D watermarking domain. The proposed approach utilizes SVM as a binary classifier for the selection of vertices for watermark embedding. The SVM is trained with feature vectors derived from the angular difference between the eigen normal and surface normals of a 1-ring neighborhood of vertices taken from normalized 3D mesh models. The SVM learns to classify vertices as appropriate or inappropriate candidates for modification in order to accommodate the watermark. Experimental results verify that the proposed algorithm is imperceptible and robust against attacks such as mesh smoothing, cropping and noise addition.展开更多
基于Wi-Fi感知的室内入侵检测系统是一种无需在移动实体上附加任何设备即可检测移动实体的系统。针对目前检测方法忽略复杂的幅度变化和相位变化引起的潜在影响,提出了融合长短期记忆网络和支持向量机的室内入侵检测新方法LSID(Long Sho...基于Wi-Fi感知的室内入侵检测系统是一种无需在移动实体上附加任何设备即可检测移动实体的系统。针对目前检测方法忽略复杂的幅度变化和相位变化引起的潜在影响,提出了融合长短期记忆网络和支持向量机的室内入侵检测新方法LSID(Long Short-Term Memory and Support Vector Machine Intrusion Detection)。LSID方法采用一种新的特征值建模方式,利用长短期记忆网络可以学习到时序特征并且能捕捉时序信号长期的依赖关系,将信道状态信息真实值与长短期记忆神经网络的预测值之差作为特征值,能更准确地捕捉入侵者对信号状态信息的影响。该检测方法在学校实验室环境下经过多次实验验证,最终检测准确率达到99.21%,通过多组实验比对,结果显示LSID方法具有有效性和可行性,相比于其他入侵检测方法准确率明显提升。展开更多
One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of t...One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of the Gaussian kernel, OCSVM and SVDD are firstly unified into the framework of kernel density estimation, and the essential relationship between them is explicitly revealed. Then the result proves that the density estimation induced by OCSVM or SVDD is in agreement with the true density. Meanwhile, it can also reduce the integrated squared error (ISE). Finally, experiments on several simulated datasets verify the revealed relationships.展开更多
目的采用4种机器学习算法分别构建结直肠癌患者术前营养不良的临床风险预测模型,探讨其预测价值。方法回顾性收集2023年1月—2024年5月在新疆医科大学附属肿瘤医院胃肠外科就诊的412例结直肠癌患者的术前资料;按7∶3的比例随机分为训练...目的采用4种机器学习算法分别构建结直肠癌患者术前营养不良的临床风险预测模型,探讨其预测价值。方法回顾性收集2023年1月—2024年5月在新疆医科大学附属肿瘤医院胃肠外科就诊的412例结直肠癌患者的术前资料;按7∶3的比例随机分为训练集(n=288)和验证集(n=124),采用单因素分析及二元logistic回归分析筛选出术前营养不良的预测因子;基于逻辑回归(LR)、支持向量机(SVM)、轻量级梯度提升(LightGBM)、多层感知机(MLP)4种机器学习算法分别构建结直肠癌患者术前营养不良风险预测模型,绘制ROC曲线评价4种算法模型预测效能,通过Delong检验比较4种模型的AUC差异。选择最优算法模型,采用校准曲线和临床决策曲线(DCA曲线)进行验证。结果(1)结直肠癌患者术前营养不良发生率为33.7%,年龄、Braden评分是其独立危险因素;(2)训练集中LightGBM算法模型预测结直肠癌患者术前发生营养不良的AUC高于LR、SVM、MLP算法模型(0.941 VS 0.874、0.830、0.831);(3)ROC曲线结果提示,LightGBM算法模型验证集中预测结直肠癌患者术前发生营养不良的AUC为0.926(95%CI:0.882~0.969);校准曲线显示,LightGBM算法模型预测结直肠癌患者术前发生营养不良的曲线与实际发生营养不良一致性良好;DCA曲线结果显示,LightGBM算法模型在阈值概率区间为0.16~0.79可以提供显著临床净收益。结论基于LightGBM算法构建的临床预测模型在预测结直肠癌患者术前发生营养不良中有较高价值,可以为临床人员实施营养管理提供参考。展开更多
Artificial neural network models are a popular estimation tool for fitting nonlinear relationships because they require no assumptions about the form of the fitting function,non-Gaussian distributions,multicollinearit...Artificial neural network models are a popular estimation tool for fitting nonlinear relationships because they require no assumptions about the form of the fitting function,non-Gaussian distributions,multicollinearity,outliers and noise in the data.The problems of backpropagation models using artificial neural networks include determination of the structure of the network and overlearning courses.According to data from 1981 to 2008 from 15 permanent sample plots on Dagangshan Mountain in Jiangxi Province,a back-propagation artificial neural network model(BPANN)and a support vector machine model(SVM)for basal area of Chinese fir(Cunninghamia lanceolata)plantations were constructed using four kinds of prediction factors,including stand age,site index,surviving stem numbers and quadratic mean diameters.Artificial intelligence methods,especially SVM,could be effective in describing stand basal area growth of Chinese fir under different growth conditions with higher simulation precision than traditional regression models.SVM and the Chapman–Richards nonlinear mixed-effects model had less systematic bias than the BPANN.展开更多
In-depth understanding of interactions between crude oil and CO2 provides insight into the CO2-based enhanced oil recovery(EOR) process design and simulation. When CO2 contacts crude oil, the dissolution process tak...In-depth understanding of interactions between crude oil and CO2 provides insight into the CO2-based enhanced oil recovery(EOR) process design and simulation. When CO2 contacts crude oil, the dissolution process takes place. This phenomenon results in the oil swelling, which depends on the temperature, pressure, and composition of the oil. The residual oil saturation in a CO2-based EOR process is inversely proportional to the oil swelling factor. Hence, it is important to estimate this influential parameter with high precision. The current study suggests the predictive model based on the least-squares support vector machine(LS-SVM) to calculate the CO2–oil swelling factor. A genetic algorithm is used to optimize hyperparameters(у and б^2) of the LS-SVM model. This model showed a high coefficient of determination(R^2= 0.9953) and a low value for the mean-squared error(MSE = 0.0003) based on the available experimental data while estimating the CO2–oil swelling factor. It was found that LS-SVM is a straightforward and accurate method to determine the CO2–oil swelling factor with negligible uncertainty. This method can be incorporated in commercial reservoir simulators to include the effect of the CO2–oil swelling factor when adequate experimental data are not available.展开更多
To solve the unbalanced data problems of learning models for semantic concepts, an optimized modeling method based on the posterior probability support vector machine (PPSVM) is presented. A neighborbased posterior ...To solve the unbalanced data problems of learning models for semantic concepts, an optimized modeling method based on the posterior probability support vector machine (PPSVM) is presented. A neighborbased posterior probability estimator for visual concepts is provided. The proposed method has been applied in a high-level visual semantic concept classification system and the experiment results show that it results in enhanced performance over the baseline SVM models, as well as in improved robustness with respect to high-level visual semantic concept classification.展开更多
Large temperature drift is an important factor for improving the performance of FOG.A trend term of temperature drift of FOG is obtained using stationary wavelets transform,and an FOG drift algorithm with least square...Large temperature drift is an important factor for improving the performance of FOG.A trend term of temperature drift of FOG is obtained using stationary wavelets transform,and an FOG drift algorithm with least squares wavelet support vector machine(LS-WSVM) is developed.The algorithm used Maxihat wavelet as a kernel function of LS-WSVM to establish an FOG drift model.It has better modeling precise than LS-WSVM model with Gauss kernel.Results indicate the efficiency of this algorithm of LS-WSVM.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60573065)the Natural Science Foundation of Shandong Province,China (Grant No Y2007G33)the Key Subject Research Foundation of Shandong Province,China(Grant No XTD0708)
文摘In this paper we apply the nonlinear time series analysis method to small-time scale traffic measurement data. The prediction-based method is used to determine the embedding dimension of the traffic data. Based on the reconstructed phase space, the local support vector machine prediction method is used to predict the traffic measurement data, and the BIC-based neighbouring point selection method is used to choose the number of the nearest neighbouring points for the local support vector machine regression model. The experimental results show that the local support vector machine prediction method whose neighbouring points are optimized can effectively predict the small-time scale traffic measurement data and can reproduce the statistical features of real traffic measurements.
基金support from "973 Project" (Contract No. 2010CB226706)
文摘Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts for failure modes are obtained with the Borda method. The risk indexes of failure modes are derived from the Borda matrix. Based on the support vector machine (SVM), a casing life prediction model is established. In the prediction model, eight risk indexes are defined as input vectors and casing life is defined as the output vector. The ideal model parameters are determined with the training set from 19 wells with casing failure. The casing life prediction software is developed with the SVM model as a predictor. The residual life of 60 wells with casing failure is predicted with the software, and then compared with the actual casing life. The comparison results show that the casing life prediction software with the SVM model has high accuracy.
文摘The use of support vector machines (SVM) for watermarking of 3D mesh models is investigated. SVMs have been widely explored for images, audio, and video watermarking but to date the potential of SVMs has not been explored in the 3D watermarking domain. The proposed approach utilizes SVM as a binary classifier for the selection of vertices for watermark embedding. The SVM is trained with feature vectors derived from the angular difference between the eigen normal and surface normals of a 1-ring neighborhood of vertices taken from normalized 3D mesh models. The SVM learns to classify vertices as appropriate or inappropriate candidates for modification in order to accommodate the watermark. Experimental results verify that the proposed algorithm is imperceptible and robust against attacks such as mesh smoothing, cropping and noise addition.
文摘基于Wi-Fi感知的室内入侵检测系统是一种无需在移动实体上附加任何设备即可检测移动实体的系统。针对目前检测方法忽略复杂的幅度变化和相位变化引起的潜在影响,提出了融合长短期记忆网络和支持向量机的室内入侵检测新方法LSID(Long Short-Term Memory and Support Vector Machine Intrusion Detection)。LSID方法采用一种新的特征值建模方式,利用长短期记忆网络可以学习到时序特征并且能捕捉时序信号长期的依赖关系,将信道状态信息真实值与长短期记忆神经网络的预测值之差作为特征值,能更准确地捕捉入侵者对信号状态信息的影响。该检测方法在学校实验室环境下经过多次实验验证,最终检测准确率达到99.21%,通过多组实验比对,结果显示LSID方法具有有效性和可行性,相比于其他入侵检测方法准确率明显提升。
基金Supported by the National Natural Science Foundation of China(60603029)the Natural Science Foundation of Jiangsu Province(BK2007074)the Natural Science Foundation for Colleges and Universities in Jiangsu Province(06KJB520132)~~
文摘One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of the Gaussian kernel, OCSVM and SVDD are firstly unified into the framework of kernel density estimation, and the essential relationship between them is explicitly revealed. Then the result proves that the density estimation induced by OCSVM or SVDD is in agreement with the true density. Meanwhile, it can also reduce the integrated squared error (ISE). Finally, experiments on several simulated datasets verify the revealed relationships.
文摘目的采用4种机器学习算法分别构建结直肠癌患者术前营养不良的临床风险预测模型,探讨其预测价值。方法回顾性收集2023年1月—2024年5月在新疆医科大学附属肿瘤医院胃肠外科就诊的412例结直肠癌患者的术前资料;按7∶3的比例随机分为训练集(n=288)和验证集(n=124),采用单因素分析及二元logistic回归分析筛选出术前营养不良的预测因子;基于逻辑回归(LR)、支持向量机(SVM)、轻量级梯度提升(LightGBM)、多层感知机(MLP)4种机器学习算法分别构建结直肠癌患者术前营养不良风险预测模型,绘制ROC曲线评价4种算法模型预测效能,通过Delong检验比较4种模型的AUC差异。选择最优算法模型,采用校准曲线和临床决策曲线(DCA曲线)进行验证。结果(1)结直肠癌患者术前营养不良发生率为33.7%,年龄、Braden评分是其独立危险因素;(2)训练集中LightGBM算法模型预测结直肠癌患者术前发生营养不良的AUC高于LR、SVM、MLP算法模型(0.941 VS 0.874、0.830、0.831);(3)ROC曲线结果提示,LightGBM算法模型验证集中预测结直肠癌患者术前发生营养不良的AUC为0.926(95%CI:0.882~0.969);校准曲线显示,LightGBM算法模型预测结直肠癌患者术前发生营养不良的曲线与实际发生营养不良一致性良好;DCA曲线结果显示,LightGBM算法模型在阈值概率区间为0.16~0.79可以提供显著临床净收益。结论基于LightGBM算法构建的临床预测模型在预测结直肠癌患者术前发生营养不良中有较高价值,可以为临床人员实施营养管理提供参考。
基金supported by the National Scientific and Technological Task in China(Nos.2015BAD09B0101,2016YFD0600302)National Natural Science Foundation of China(No.31570619)the Special Science and Technology Innovation in Jiangxi Province(No.201702)
文摘Artificial neural network models are a popular estimation tool for fitting nonlinear relationships because they require no assumptions about the form of the fitting function,non-Gaussian distributions,multicollinearity,outliers and noise in the data.The problems of backpropagation models using artificial neural networks include determination of the structure of the network and overlearning courses.According to data from 1981 to 2008 from 15 permanent sample plots on Dagangshan Mountain in Jiangxi Province,a back-propagation artificial neural network model(BPANN)and a support vector machine model(SVM)for basal area of Chinese fir(Cunninghamia lanceolata)plantations were constructed using four kinds of prediction factors,including stand age,site index,surviving stem numbers and quadratic mean diameters.Artificial intelligence methods,especially SVM,could be effective in describing stand basal area growth of Chinese fir under different growth conditions with higher simulation precision than traditional regression models.SVM and the Chapman–Richards nonlinear mixed-effects model had less systematic bias than the BPANN.
基金financial support from Natural Sciences and Engineering Research Council of Canada (NSERC), Innovate NL, and Statoil Canada
文摘In-depth understanding of interactions between crude oil and CO2 provides insight into the CO2-based enhanced oil recovery(EOR) process design and simulation. When CO2 contacts crude oil, the dissolution process takes place. This phenomenon results in the oil swelling, which depends on the temperature, pressure, and composition of the oil. The residual oil saturation in a CO2-based EOR process is inversely proportional to the oil swelling factor. Hence, it is important to estimate this influential parameter with high precision. The current study suggests the predictive model based on the least-squares support vector machine(LS-SVM) to calculate the CO2–oil swelling factor. A genetic algorithm is used to optimize hyperparameters(у and б^2) of the LS-SVM model. This model showed a high coefficient of determination(R^2= 0.9953) and a low value for the mean-squared error(MSE = 0.0003) based on the available experimental data while estimating the CO2–oil swelling factor. It was found that LS-SVM is a straightforward and accurate method to determine the CO2–oil swelling factor with negligible uncertainty. This method can be incorporated in commercial reservoir simulators to include the effect of the CO2–oil swelling factor when adequate experimental data are not available.
基金Sponsored by the Beijing Municipal Natural Science Foundation(4082027)
文摘To solve the unbalanced data problems of learning models for semantic concepts, an optimized modeling method based on the posterior probability support vector machine (PPSVM) is presented. A neighborbased posterior probability estimator for visual concepts is provided. The proposed method has been applied in a high-level visual semantic concept classification system and the experiment results show that it results in enhanced performance over the baseline SVM models, as well as in improved robustness with respect to high-level visual semantic concept classification.
文摘Large temperature drift is an important factor for improving the performance of FOG.A trend term of temperature drift of FOG is obtained using stationary wavelets transform,and an FOG drift algorithm with least squares wavelet support vector machine(LS-WSVM) is developed.The algorithm used Maxihat wavelet as a kernel function of LS-WSVM to establish an FOG drift model.It has better modeling precise than LS-WSVM model with Gauss kernel.Results indicate the efficiency of this algorithm of LS-WSVM.