A novel classification algorithm based on abnormal magnetic signals is proposed for ground moving targets which are made of ferromagnetic material. According to the effect of diverse targets on earth's magnetism,t...A novel classification algorithm based on abnormal magnetic signals is proposed for ground moving targets which are made of ferromagnetic material. According to the effect of diverse targets on earth's magnetism,the moving targets are detected by a magnetic sensor and classified with a simple computation method. The detection sensor is used for collecting a disturbance signal of earth magnetic field from an undetermined target. An optimum category match pattern of target signature is tested by training some statistical samples and designing a classification machine. Three ordinary targets are researched in the paper. The experimental results show that the algorithm has a low computation cost and a better sorting accuracy. This classification method can be applied to ground reconnaissance and target intrusion detection.展开更多
Distributed genetic algorithm can be combined with the adaptive genetic algorithm for mining the interesting and comprehensible classification rules.The paper gives the method to encode for the rules,the fitness funct...Distributed genetic algorithm can be combined with the adaptive genetic algorithm for mining the interesting and comprehensible classification rules.The paper gives the method to encode for the rules,the fitness function,the selecting,crossover,mutation and migration operator for the DAGA at the same time are designed.展开更多
针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行...针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行性规则和改进的epsilon约束处理方法进行更新。在第一阶段,主种群和副种群分别探索约束Pareto前沿(CPF)与无约束Pareto前沿(UPF),从而获取UPF和CPF的位置信息;在第二阶段,设计一种分类方法,根据UPF与CPF的位置对CMOP进行分类,从而对不同类型的CMOP执行特定的进化策略;此外,提出一种随机扰动策略,在副种群进化到CPF附近时,对它进行随机扰动以产生一些位于CPF上的个体,从而促进主种群在CPF上的收敛与分布。把所提算法与6个具有代表性的算法:CMOES(Constrained Multi-objective Optimization based on Even Search)、dp-ACS(dual-population evolutionary algorithm based on Adaptive Constraint Strength)、c-DPEA(DualPopulation based Evolutionary Algorithm for constrained multi-objective optimization)、CAEAD(Constrained Evolutionary Algorithm based on Alternative Evolution and Degeneration)、BiCo(evolutionary algorithm with Bidirectional Coevolution)和DDCMOEA(Dual-stage Dual-population Evolutionary Algorithm for Constrained Multiobjective Optimization)在LIRCMOP和DASCMOP两个测试集上进行实验比较。实验结果表明,DPDSEA在23个问题中取得了15个最优反转世代距离(IGD)值和12个最优超体积(HV)值,展现了DPDSEA在处理复杂CMOP时显著的性能优势。展开更多
基金Sponsored by the National Natural Science Foundation of China (60773129)the Excellent Youth Science and Technology Foundation of Anhui Province of China ( 08040106808)
文摘A novel classification algorithm based on abnormal magnetic signals is proposed for ground moving targets which are made of ferromagnetic material. According to the effect of diverse targets on earth's magnetism,the moving targets are detected by a magnetic sensor and classified with a simple computation method. The detection sensor is used for collecting a disturbance signal of earth magnetic field from an undetermined target. An optimum category match pattern of target signature is tested by training some statistical samples and designing a classification machine. Three ordinary targets are researched in the paper. The experimental results show that the algorithm has a low computation cost and a better sorting accuracy. This classification method can be applied to ground reconnaissance and target intrusion detection.
基金National Ethnic Affairs Commission NatureScience Foundation of China(PMZY06004)the Education Science Foundation of Guangxi(2006A-E004)
文摘Distributed genetic algorithm can be combined with the adaptive genetic algorithm for mining the interesting and comprehensible classification rules.The paper gives the method to encode for the rules,the fitness function,the selecting,crossover,mutation and migration operator for the DAGA at the same time are designed.
文摘针对包含复杂约束条件的约束多目标优化问题(CMOP),在确保算法满足严格约束的同时,有效平衡算法的收敛性与多样性是重大挑战。因此,提出一种双种群双阶段的进化算法(DPDSEA)。该算法引入2个独立进化种群:主种群和副种群,并分别利用可行性规则和改进的epsilon约束处理方法进行更新。在第一阶段,主种群和副种群分别探索约束Pareto前沿(CPF)与无约束Pareto前沿(UPF),从而获取UPF和CPF的位置信息;在第二阶段,设计一种分类方法,根据UPF与CPF的位置对CMOP进行分类,从而对不同类型的CMOP执行特定的进化策略;此外,提出一种随机扰动策略,在副种群进化到CPF附近时,对它进行随机扰动以产生一些位于CPF上的个体,从而促进主种群在CPF上的收敛与分布。把所提算法与6个具有代表性的算法:CMOES(Constrained Multi-objective Optimization based on Even Search)、dp-ACS(dual-population evolutionary algorithm based on Adaptive Constraint Strength)、c-DPEA(DualPopulation based Evolutionary Algorithm for constrained multi-objective optimization)、CAEAD(Constrained Evolutionary Algorithm based on Alternative Evolution and Degeneration)、BiCo(evolutionary algorithm with Bidirectional Coevolution)和DDCMOEA(Dual-stage Dual-population Evolutionary Algorithm for Constrained Multiobjective Optimization)在LIRCMOP和DASCMOP两个测试集上进行实验比较。实验结果表明,DPDSEA在23个问题中取得了15个最优反转世代距离(IGD)值和12个最优超体积(HV)值,展现了DPDSEA在处理复杂CMOP时显著的性能优势。