在协作学习过程中,协作会话质量是影响协作知识建构的关键因素之一,高质量的协作会话有助于培养学习者的反思和合作能力.如何检测协作会话质量是教育技术研究中的一个挑战性问题.本文提出了一种融合情感增强和主题相似度计算的协作会话...在协作学习过程中,协作会话质量是影响协作知识建构的关键因素之一,高质量的协作会话有助于培养学习者的反思和合作能力.如何检测协作会话质量是教育技术研究中的一个挑战性问题.本文提出了一种融合情感增强和主题相似度计算的协作会话质量检测模型BRASE(BERT-Attention with Similarity and Emotion).首先,利用BERT对协作会话内容和主题信息进行编码;其次,通过Bi-LSTM和注意力机制捕获协作会话的上下文语义及关键词信息,以提取协作会话内容和会话主题的主要特征,在此基础上计算协作会话的主题相似度;最后,通过朴素贝叶斯算法计算协作会话情感得分来评估协作会话的质量.本文在课堂真实数据集上进行了大量实验,结果表明,BRASE模型在基于情感权重和主题相似度下对协作会话质量检测的平均准确度和F1值方面优于现有模型.因此,BRASE模型能够有效检测协作会话的质量.展开更多
揭示技术演化脉络是把握技术发展规律的前提,基于专利信息的主题挖掘是基于技术发展微观机制呈现宏观规律的重要研究内容,对技术超前布局和创新驱动实践具有重大意义。技术主题动态演化分析DPL-BMM(Dirichlet process biterm-based mixt...揭示技术演化脉络是把握技术发展规律的前提,基于专利信息的主题挖掘是基于技术发展微观机制呈现宏观规律的重要研究内容,对技术超前布局和创新驱动实践具有重大意义。技术主题动态演化分析DPL-BMM(Dirichlet process biterm-based mixture model with labelling)是一种附有标签的基于双项狄利克雷过程的混合模型,其突破了传统主题模型在进行主题识别时需固定主题数目的局限,通过增加技术主题表示模块使识别到的技术主题内容更加明确。本文以人工智能领域技术为例进行实证分析,研究结果表明,该方法对技术主题及其演化脉络展示具有实际应用价值。展开更多
在话题检测任务中,面对微博这类短文本时,针对SBERT模型的特征提取能力的局限性,以及在聚类阶段,单遍聚类算法存在的小簇问题和效率问题,对两者改进,提出一种基于半监督SBERT与SinglePass(semi-supervised SBERT with SinglePass cluste...在话题检测任务中,面对微博这类短文本时,针对SBERT模型的特征提取能力的局限性,以及在聚类阶段,单遍聚类算法存在的小簇问题和效率问题,对两者改进,提出一种基于半监督SBERT与SinglePass(semi-supervised SBERT with SinglePass clustering,Semi-SBERT-SP)的微博热点话题检测方法,将SBERT模型结合半监督训练,提高其短文本特征提取能力。在聚类阶段过程中引入时间窗口和降维,提高算法效率,增加一个合并层,处理算法产生的小簇。在话题表示层,提出一种融入词热度的词贡献指标,用于提取话题簇中的关键词。实验结果表明,该方法在准确率、F1、互信息3个指标上均优于对比模型或方法,能够有效检测出微博中包含的热点话题。展开更多
探索突发事件网络舆情主题转变节点,并据此展开多阶段网络舆情风险评估,对精准处置突发事件网络舆情危机、提供动态舆情引导策略具有重要参考意义。本文提出一种突发事件情境下网络舆情主题转变路径识别及多阶段风险评估方法。首先,融合...探索突发事件网络舆情主题转变节点,并据此展开多阶段网络舆情风险评估,对精准处置突发事件网络舆情危机、提供动态舆情引导策略具有重要参考意义。本文提出一种突发事件情境下网络舆情主题转变路径识别及多阶段风险评估方法。首先,融合RoBERTa (robustly optimized BERT pretraining approach)模型提出时序语义-共词网络,并基于Louvain-CFDP (clustering by fast search and find of density peaks)算法进行网络社区主题发现;其次,提出主题状态转变检测模型,据此生成主题转变路径,识别并分析多类型转变路径及其风险波动特征。以“日本核污染水排海”事件为例进行实证分析,识别事件发展型、情绪集聚型及衍生事件型3种转变路径类型,分别对这3种类型路径的特点、风险特征及差异进行分析。研究结果表明,本文提出的主题转变路径及风险评估研究方法能够完整、全面地展现突发事件在社交媒体上的话题转变,为管理部门快速锁定高风险话题,制定精准、有效的舆情风险引导方案提供借鉴与参考。展开更多
随着社交媒体的发展,越来越多的人在社交平台上发表对热点话题的看法,其中讽刺手法的运用严重影响了社交媒体中情感分析的精度。目前面向话题的讽刺识别研究未同时考虑上下文和常识知识的作用,也忽略了在同一个话题下进行讽刺识别的场...随着社交媒体的发展,越来越多的人在社交平台上发表对热点话题的看法,其中讽刺手法的运用严重影响了社交媒体中情感分析的精度。目前面向话题的讽刺识别研究未同时考虑上下文和常识知识的作用,也忽略了在同一个话题下进行讽刺识别的场景。为此,提出了基于上下文和常识的讽刺识别模型(Sarcasm Detection with Context and Common Sense,CCSD)。首先,模型使用C 3 KG常识库生成常识文本,并将目标句、话题上下文和常识文本作为预训练BERT模型的输入。其次,使用注意力机制来关注目标句和常识中重要的信息。最后,通过门控机制和特征融合,实现讽刺识别。文中构建了一个面向话题的讽刺识别数据集,以验证模型在特定话题中的有效性。实验结果表明,相比基线模型,新模型的性能更优。展开更多
文摘在协作学习过程中,协作会话质量是影响协作知识建构的关键因素之一,高质量的协作会话有助于培养学习者的反思和合作能力.如何检测协作会话质量是教育技术研究中的一个挑战性问题.本文提出了一种融合情感增强和主题相似度计算的协作会话质量检测模型BRASE(BERT-Attention with Similarity and Emotion).首先,利用BERT对协作会话内容和主题信息进行编码;其次,通过Bi-LSTM和注意力机制捕获协作会话的上下文语义及关键词信息,以提取协作会话内容和会话主题的主要特征,在此基础上计算协作会话的主题相似度;最后,通过朴素贝叶斯算法计算协作会话情感得分来评估协作会话的质量.本文在课堂真实数据集上进行了大量实验,结果表明,BRASE模型在基于情感权重和主题相似度下对协作会话质量检测的平均准确度和F1值方面优于现有模型.因此,BRASE模型能够有效检测协作会话的质量.
文摘揭示技术演化脉络是把握技术发展规律的前提,基于专利信息的主题挖掘是基于技术发展微观机制呈现宏观规律的重要研究内容,对技术超前布局和创新驱动实践具有重大意义。技术主题动态演化分析DPL-BMM(Dirichlet process biterm-based mixture model with labelling)是一种附有标签的基于双项狄利克雷过程的混合模型,其突破了传统主题模型在进行主题识别时需固定主题数目的局限,通过增加技术主题表示模块使识别到的技术主题内容更加明确。本文以人工智能领域技术为例进行实证分析,研究结果表明,该方法对技术主题及其演化脉络展示具有实际应用价值。
文摘在话题检测任务中,面对微博这类短文本时,针对SBERT模型的特征提取能力的局限性,以及在聚类阶段,单遍聚类算法存在的小簇问题和效率问题,对两者改进,提出一种基于半监督SBERT与SinglePass(semi-supervised SBERT with SinglePass clustering,Semi-SBERT-SP)的微博热点话题检测方法,将SBERT模型结合半监督训练,提高其短文本特征提取能力。在聚类阶段过程中引入时间窗口和降维,提高算法效率,增加一个合并层,处理算法产生的小簇。在话题表示层,提出一种融入词热度的词贡献指标,用于提取话题簇中的关键词。实验结果表明,该方法在准确率、F1、互信息3个指标上均优于对比模型或方法,能够有效检测出微博中包含的热点话题。
文摘探索突发事件网络舆情主题转变节点,并据此展开多阶段网络舆情风险评估,对精准处置突发事件网络舆情危机、提供动态舆情引导策略具有重要参考意义。本文提出一种突发事件情境下网络舆情主题转变路径识别及多阶段风险评估方法。首先,融合RoBERTa (robustly optimized BERT pretraining approach)模型提出时序语义-共词网络,并基于Louvain-CFDP (clustering by fast search and find of density peaks)算法进行网络社区主题发现;其次,提出主题状态转变检测模型,据此生成主题转变路径,识别并分析多类型转变路径及其风险波动特征。以“日本核污染水排海”事件为例进行实证分析,识别事件发展型、情绪集聚型及衍生事件型3种转变路径类型,分别对这3种类型路径的特点、风险特征及差异进行分析。研究结果表明,本文提出的主题转变路径及风险评估研究方法能够完整、全面地展现突发事件在社交媒体上的话题转变,为管理部门快速锁定高风险话题,制定精准、有效的舆情风险引导方案提供借鉴与参考。
文摘随着社交媒体的发展,越来越多的人在社交平台上发表对热点话题的看法,其中讽刺手法的运用严重影响了社交媒体中情感分析的精度。目前面向话题的讽刺识别研究未同时考虑上下文和常识知识的作用,也忽略了在同一个话题下进行讽刺识别的场景。为此,提出了基于上下文和常识的讽刺识别模型(Sarcasm Detection with Context and Common Sense,CCSD)。首先,模型使用C 3 KG常识库生成常识文本,并将目标句、话题上下文和常识文本作为预训练BERT模型的输入。其次,使用注意力机制来关注目标句和常识中重要的信息。最后,通过门控机制和特征融合,实现讽刺识别。文中构建了一个面向话题的讽刺识别数据集,以验证模型在特定话题中的有效性。实验结果表明,相比基线模型,新模型的性能更优。