氨分解作为一种很有前景的现场制氢技术,关键在于开发出廉价、高性能的催化剂。本研究通过共沉淀法合成系列Ni_(x)Mg_(75–x)Al_(25)类水滑石化合物(HTlc)作为前驱体,经过焙烧和还原处理制备负载型高分散Ni/Mg(Al)O催化剂并用于氨分解制...氨分解作为一种很有前景的现场制氢技术,关键在于开发出廉价、高性能的催化剂。本研究通过共沉淀法合成系列Ni_(x)Mg_(75–x)Al_(25)类水滑石化合物(HTlc)作为前驱体,经过焙烧和还原处理制备负载型高分散Ni/Mg(Al)O催化剂并用于氨分解制氢,采用不同研究手段对样品进行了表征,考察了Ni含量和氨还原对催化性能的影响。结果显示,HTlc前驱体经过焙烧分解形成Mg(Ni,Al)O固溶体,Ni物种与载体之间存在较强的相互作用,经750℃氨还原得到高分散Ni金属纳米颗粒,其平均晶粒尺寸为5.9~7.7 nm。质谱分析表明,氨还原过程中无氮氧化物(NOx)生成,同时750℃氨还原与氢还原催化剂的活性相当,说明氨是一种合适的还原气。催化剂活性随着Ni含量和还原温度升高而增加。其中,750℃氨还原Ni_(20)Mg_(55)Al_(25)催化剂在30000 m L·g^(–1)cat·h^(–1)、600℃下的氨转化率为98%,且在100 h反应过程中转化率保持不变,Ni金属无明显烧结现象,催化剂表现出良好的活性、稳定性和抗烧结性能。展开更多
氢-氨绿色循环是指利用氢和氨的相互转换来实现能源的存储和运输,这个过程主要包括绿氢制氨(hydrogen to ammonia,H2A)与绿氨制氢(ammonia to hydrogen,A2H)。该循环不仅有望解决传统Haber-Bosch工艺合成氨的高能耗与过量CO_(2)排放问题...氢-氨绿色循环是指利用氢和氨的相互转换来实现能源的存储和运输,这个过程主要包括绿氢制氨(hydrogen to ammonia,H2A)与绿氨制氢(ammonia to hydrogen,A2H)。该循环不仅有望解决传统Haber-Bosch工艺合成氨的高能耗与过量CO_(2)排放问题,还可能为氢能产业链中高压氢气储存与运输的挑战提供可行性方案,成为贯通可再生能源、氢能、氨能和传统产业如钢铁行业的重要环节,促进资源的高效利用。在H2A过程中,当前的研究主要集中在中低温、室温条件下的合成氨工艺以期取代Haber-Bosch法,但这些工艺面临诸多尚待解决的科学挑战。此外,氢-氨绿色循环的顺利运行依赖于氨的有效能量释放,即A2H过程的有效进行,以确保氨分解为氢气和/或直接将氨转化为电力或能量。H2A与A2H互为可逆过程,全面理解氨合成与氨分解反应对于更深入与全面理解氢-氨循环十分重要。因此,本文将立足氢-氨循环,首先简要介绍氢与氨之间的关系,随后着重总结当前利用可再生能源驱动的中低温、室温条件下的H2A和A2H研究的最新进展。最后,总结了目前氢-氨绿色循环的进程及面临的挑战,并对该领域未来的发展方向进行展望。展开更多
文摘氨分解作为一种很有前景的现场制氢技术,关键在于开发出廉价、高性能的催化剂。本研究通过共沉淀法合成系列Ni_(x)Mg_(75–x)Al_(25)类水滑石化合物(HTlc)作为前驱体,经过焙烧和还原处理制备负载型高分散Ni/Mg(Al)O催化剂并用于氨分解制氢,采用不同研究手段对样品进行了表征,考察了Ni含量和氨还原对催化性能的影响。结果显示,HTlc前驱体经过焙烧分解形成Mg(Ni,Al)O固溶体,Ni物种与载体之间存在较强的相互作用,经750℃氨还原得到高分散Ni金属纳米颗粒,其平均晶粒尺寸为5.9~7.7 nm。质谱分析表明,氨还原过程中无氮氧化物(NOx)生成,同时750℃氨还原与氢还原催化剂的活性相当,说明氨是一种合适的还原气。催化剂活性随着Ni含量和还原温度升高而增加。其中,750℃氨还原Ni_(20)Mg_(55)Al_(25)催化剂在30000 m L·g^(–1)cat·h^(–1)、600℃下的氨转化率为98%,且在100 h反应过程中转化率保持不变,Ni金属无明显烧结现象,催化剂表现出良好的活性、稳定性和抗烧结性能。
文摘氢-氨绿色循环是指利用氢和氨的相互转换来实现能源的存储和运输,这个过程主要包括绿氢制氨(hydrogen to ammonia,H2A)与绿氨制氢(ammonia to hydrogen,A2H)。该循环不仅有望解决传统Haber-Bosch工艺合成氨的高能耗与过量CO_(2)排放问题,还可能为氢能产业链中高压氢气储存与运输的挑战提供可行性方案,成为贯通可再生能源、氢能、氨能和传统产业如钢铁行业的重要环节,促进资源的高效利用。在H2A过程中,当前的研究主要集中在中低温、室温条件下的合成氨工艺以期取代Haber-Bosch法,但这些工艺面临诸多尚待解决的科学挑战。此外,氢-氨绿色循环的顺利运行依赖于氨的有效能量释放,即A2H过程的有效进行,以确保氨分解为氢气和/或直接将氨转化为电力或能量。H2A与A2H互为可逆过程,全面理解氨合成与氨分解反应对于更深入与全面理解氢-氨循环十分重要。因此,本文将立足氢-氨循环,首先简要介绍氢与氨之间的关系,随后着重总结当前利用可再生能源驱动的中低温、室温条件下的H2A和A2H研究的最新进展。最后,总结了目前氢-氨绿色循环的进程及面临的挑战,并对该领域未来的发展方向进行展望。