To accurately measure and evaluate the oil-water production profile of horizontal wells, a dynamic measurement experiment of oil-water two-phase flow in horizontal wells and numerical simulation were combined to estab...To accurately measure and evaluate the oil-water production profile of horizontal wells, a dynamic measurement experiment of oil-water two-phase flow in horizontal wells and numerical simulation were combined to establish a method for measuring the partial phase flow rate of oil-water two-phase stratified flow in horizontal wells. An experimental work was performed in horizontal oil-water two-phase flow simulation well using combination production logging tool including mini-capacitance sensor and mini-spinner. The combination tool provides a recording of holdup and velocity profiles at five different heights of the borehole cross-section. The effect of total flow rate and water-cut on the response of spinner and capacitive sensor at five measured positions were investigated. The capacitance water holdup interpolation imaging algorithm was used to determine the local fluid property and oil-water interface height, and the measured local fluid speed was combined with the numerical simulation result to establish an optimal calculation model for obtaining the partial phase flow rate of the oil-water two-phase stratified flow in the horizontal well. The calculated flow rates of five measured points are basically consistent with the experimental data, the total flow rate and water holdup from calculation are in agreement with the set values in the experiment too, suggesting that the method has high accuracy.展开更多
To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and ...To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and spectroscopy was used to measure the luminescence of In_(0.15)Ga_(0.85)N five-period multiquantum wells.The lattice-composition-energy relationship was established with the help of energy-dispersive x-ray spectroscopy,and the bandgaps of In_(0.15)Ga_(0.85)N and GaN in multiple quantum wells were extracted by electron energy loss spectroscopy to understand the features of cathodoluminescence spectra.The luminescence differences between different periods of multiquantum wells and the effects of defects such as composition fluctuation and dislocations on the luminescence of multiple quantum wells were revealed.Our study establishing the direct relationship between the atomic structure of In_(x)Ga_(1-x)N multiquantum wells and photoelectric properties provides useful information for nitride applications.展开更多
Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However...Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However,our previous research has revealed efficient carrier escape in low-dimensional structures,contradicting this conventional understanding.In this study,we review the energy band structure of quantum wells along the growth direction considering it as a superposition of the bulk material dispersion and quantization energy dispersion resulting from the quantum confinement across the whole Brillouin zone.By accounting for all wave vectors,we obtain a certain distribution of carrier energy at each quantized energy level,giving rise to the energy subbands.These results enable carriers to escape from the well under the influence of an electric field.Additionally,we have compiled a comprehensive summary of various energy band scenarios in quantum well structures relevant to carrier transport.Such a new interpretation holds significant value in deepening our comprehension of low-dimensional energy bands,discovering new physical phenomena,and designing novel devices with superior performance.展开更多
Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures...Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures, the energy of carriers in the well splits into discrete energy levels due to the confinement of barriers in the growth direction. However, the discrete energy levels obtained at a fixed wave vector cannot accurately reflect the actual energy band structure. In this work, the band structure of the type-II quantum wells is reanalyzed. When the wave vectors of the entire Brillouin region(corresponding to the growth direction) are taken into account, the quantized energy levels of the carriers in the well are replaced by subbands with certain energy distributions. This new understanding of the energy bands of low-dimensional structures not only helps us to have a deeper cognition of the structure, but also may overturn many viewpoints in traditional band theories and serve as supplementary to the band theory of low-dimensional systems.展开更多
The shale revolution has turned the United States from an oil importer into an oil exporter.The success of shale oil production in the U.S.has inspired many countries,including China,to begin the exploitation and deve...The shale revolution has turned the United States from an oil importer into an oil exporter.The success of shale oil production in the U.S.has inspired many countries,including China,to begin the exploitation and development of shale oil resources.In this study,the production curves of over 30,000 shale oil wells in the Bakken,Eagle Ford(EF)and Permian are systematically analyzed to provide reference and guidance for future shale oil development.To find out the most suitable decline curve models for shale oil wells,fifteen models and a new fitting method are tested on wells with production history over 6 years.Interestingly,all basins show similar results despite of their varieties in geological conditions:stretched exponential production decline(SEPD)+Arps model provides most accurate prediction of estimated ultimate recovery(EUR)for wells with over 2 years'production,while the Arps model can be used before the two years'switch point.With the EUR calculated by decline curve analysis,we further construct simple regression models for different basins to predict the EUR quickly and early.This work helps us better understand the production of shale oil wells,as well as provide important suggestions for the choices of models for shale oil production prediction.展开更多
The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite ...The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite element method. The effects of gravity and torques on the buckling are included in the analyses and the calculated results are well compared with existing solutions. It is shown that the buckling only occurs at the lower portion of the tubing where the axial load is the largest, and the contact force of the well, the bending moment of the tubing and the buckling displacement of this portion vary periodically. The buckling spreads upwards from the bit with the increase of axial load. There is no buckling at the upper portion of the tubing where the bending moment is zero. And the contact force of this section increases only slightly with the increase of the axial load. With the increase of the deviation angle, the length of buckling portion and buckling displacement amplitude decrease, the contact force increases with the increase of load at the upper portion and its amplitude decreases at the lower buckling section, the bending moment remains zero at the upper portion and its amplitude decreases at the lower buckling portion. The buckling displacement increases with the increase of the torque, but the increment is very small.展开更多
An exact forecast of the failures of a sucker rod-pumped well in a production area means much for an oilfield’s operation budget, operational arrangement and production plan. In this paper, according to the characte...An exact forecast of the failures of a sucker rod-pumped well in a production area means much for an oilfield’s operation budget, operational arrangement and production plan. In this paper, according to the characteristics of failed sucker rod-pumped well randomness and strong outburst, with the gray GM (1,1) forecast model and the Markov forecast model combined, gray GM (1,1) forecast model is utilized to handle the primary data of an oilfield, and Markov forecast model is utilized to calculate the state transfer probability of forecast value. Then, the gray Markov forecast model considering the influence of randomness factors is formed. Field results prove that the calculation precision of this method is higher and the practicability is greater.展开更多
There is a close theoretical similarity between water pressure gradients in aquifers and applied voltage gradients in aqueous solutions. A series of electric field analogue experiments has been conducted by focusing ...There is a close theoretical similarity between water pressure gradients in aquifers and applied voltage gradients in aqueous solutions. A series of electric field analogue experiments has been conducted by focusing on symmetrical multi-lateral wells and dual-lateral wells of arbitrary angles between laterals. This research not only evaluates the productivity equations of a symmetrical multi-lateral well showing the effect of angles on productivity, but also proposes the concept of the multi-lateral productivity coefficient. Moreover, the multi-lateral productivity coefficient equation is designed to calculate the productivity of dual-lateral wells of variable angles, which is in turn supported by experiment. It also helps provide the experimental basis for optimizing the configuration, and building the semi-analytic productivity model, of multi-lateral wells.展开更多
SAGD horizontal wells are used to enhance oil recovery from heavy oil reservoirs.This technology requires precise separation between the production well and the injection well to ensure the efficient drainage of the r...SAGD horizontal wells are used to enhance oil recovery from heavy oil reservoirs.This technology requires precise separation between the production well and the injection well to ensure the efficient drainage of the reservoir.By studying the attitude of the downhole probe tube and the production well trajectory,an algorithm is proposed for eliminating ferromagnetic interference while drilling injection wells.A high accuracy filter circuit has been designed to correct the detected magnetic signals,which are ultra-weak,frequency-instable,and narrow-band.The directional drilling magnetic guidance system(DD-MGS) has been developed by integrating these advanced techniques.It contains a sub-system for the ranging calculation software,a magnetic source,a downhole probe tube and a sub-system for collecting & processing the detected signals.The DD-MGS has succeeded in oilfield applications.It can guide the directional drilling trajectory not only in the horizontal section but also in the build section of horizontal injection wells.This new technology has broad potential applications.展开更多
It is important to achieve continuous, stable and efficient pumping well operation in actual oilfield operation. Down-hole pumping well working conditions can be monitored in real-time and a reasonable production sche...It is important to achieve continuous, stable and efficient pumping well operation in actual oilfield operation. Down-hole pumping well working conditions can be monitored in real-time and a reasonable production scheme can be designed when computer diagnosis is used. However, it is difficult to make a comprehensive analysis to supply efficient technical guidance for operation of the pumping well with multiple faults of down-hole conditions, which cannot be effectively dealt with by the common methods. To solve this problem, a method based on designated component analysis (DCA) is used in this paper. Freeman chain code is used to represent the down-hole dynamometer card whose important characteristics are extracted to construct a designated mode set. A control chart is used as a basis for fault detection. The upper and lower control lines on the control chart are determined from standard samples in normal working conditions. In an incompletely orthogonal mode, the designated mode set could be divided into some subsets in which the modes are completely orthogonal. The observed data is projected into each designated mode to realize fault detection according to the upper and lower control lines. The examples show that the proposed method can effectively diagnose multiple faults of down-hole conditions.展开更多
基金Supported by National Natural Science Foundation of China(41474115)Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University)Ministry of Education of China(No K2018-02)Educational Commission of Hubei Province of China(D20141302)
文摘To accurately measure and evaluate the oil-water production profile of horizontal wells, a dynamic measurement experiment of oil-water two-phase flow in horizontal wells and numerical simulation were combined to establish a method for measuring the partial phase flow rate of oil-water two-phase stratified flow in horizontal wells. An experimental work was performed in horizontal oil-water two-phase flow simulation well using combination production logging tool including mini-capacitance sensor and mini-spinner. The combination tool provides a recording of holdup and velocity profiles at five different heights of the borehole cross-section. The effect of total flow rate and water-cut on the response of spinner and capacitive sensor at five measured positions were investigated. The capacitance water holdup interpolation imaging algorithm was used to determine the local fluid property and oil-water interface height, and the measured local fluid speed was combined with the numerical simulation result to establish an optimal calculation model for obtaining the partial phase flow rate of the oil-water two-phase stratified flow in the horizontal well. The calculated flow rates of five measured points are basically consistent with the experimental data, the total flow rate and water holdup from calculation are in agreement with the set values in the experiment too, suggesting that the method has high accuracy.
基金Project supported by the National Key R&D Program of China (Grant No. 2019YFA0708202)the National Natural Science Foundation of China (Grant Nos. 11974023, 52021006, 61974139, 12074369, and 12104017)+1 种基金the “2011 Program” from the Peking–Tsinghua–IOP Collaborative Innovation Center of Quantum Matterthe Youth Supporting Program of Institute of Semiconductors
文摘To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and spectroscopy was used to measure the luminescence of In_(0.15)Ga_(0.85)N five-period multiquantum wells.The lattice-composition-energy relationship was established with the help of energy-dispersive x-ray spectroscopy,and the bandgaps of In_(0.15)Ga_(0.85)N and GaN in multiple quantum wells were extracted by electron energy loss spectroscopy to understand the features of cathodoluminescence spectra.The luminescence differences between different periods of multiquantum wells and the effects of defects such as composition fluctuation and dislocations on the luminescence of multiple quantum wells were revealed.Our study establishing the direct relationship between the atomic structure of In_(x)Ga_(1-x)N multiquantum wells and photoelectric properties provides useful information for nitride applications.
基金the National Natural Science Foundation of China(Grant Nos.61991441 and 62004218)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB01000000)Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2021005).
文摘Quantum confinement is recognized to be an inherent property in low-dimensional structures.Traditionally,it is believed that the carriers trapped within the well cannot escape due to the discrete energy levels.However,our previous research has revealed efficient carrier escape in low-dimensional structures,contradicting this conventional understanding.In this study,we review the energy band structure of quantum wells along the growth direction considering it as a superposition of the bulk material dispersion and quantization energy dispersion resulting from the quantum confinement across the whole Brillouin zone.By accounting for all wave vectors,we obtain a certain distribution of carrier energy at each quantized energy level,giving rise to the energy subbands.These results enable carriers to escape from the well under the influence of an electric field.Additionally,we have compiled a comprehensive summary of various energy band scenarios in quantum well structures relevant to carrier transport.Such a new interpretation holds significant value in deepening our comprehension of low-dimensional energy bands,discovering new physical phenomena,and designing novel devices with superior performance.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61991441 and 62004218)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB01000000)Youth Innovation Promotion Association Chinese Academy of Sciences (Grant No. 2021005)。
文摘Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures, the energy of carriers in the well splits into discrete energy levels due to the confinement of barriers in the growth direction. However, the discrete energy levels obtained at a fixed wave vector cannot accurately reflect the actual energy band structure. In this work, the band structure of the type-II quantum wells is reanalyzed. When the wave vectors of the entire Brillouin region(corresponding to the growth direction) are taken into account, the quantized energy levels of the carriers in the well are replaced by subbands with certain energy distributions. This new understanding of the energy bands of low-dimensional structures not only helps us to have a deeper cognition of the structure, but also may overturn many viewpoints in traditional band theories and serve as supplementary to the band theory of low-dimensional systems.
基金funded by the National Natural Science Foundation of China(Grant No.52374043)the Key Program of National Natural Science Foundation of China(Grant No.52234003)。
文摘The shale revolution has turned the United States from an oil importer into an oil exporter.The success of shale oil production in the U.S.has inspired many countries,including China,to begin the exploitation and development of shale oil resources.In this study,the production curves of over 30,000 shale oil wells in the Bakken,Eagle Ford(EF)and Permian are systematically analyzed to provide reference and guidance for future shale oil development.To find out the most suitable decline curve models for shale oil wells,fifteen models and a new fitting method are tested on wells with production history over 6 years.Interestingly,all basins show similar results despite of their varieties in geological conditions:stretched exponential production decline(SEPD)+Arps model provides most accurate prediction of estimated ultimate recovery(EUR)for wells with over 2 years'production,while the Arps model can be used before the two years'switch point.With the EUR calculated by decline curve analysis,we further construct simple regression models for different basins to predict the EUR quickly and early.This work helps us better understand the production of shale oil wells,as well as provide important suggestions for the choices of models for shale oil production prediction.
文摘The equilibrium equations and the functional for tubing buckling in arbitrary straight wells are derived. The entire buckling process of tubing in deviated wells is analyzed for the first time by utilizing the finite element method. The effects of gravity and torques on the buckling are included in the analyses and the calculated results are well compared with existing solutions. It is shown that the buckling only occurs at the lower portion of the tubing where the axial load is the largest, and the contact force of the well, the bending moment of the tubing and the buckling displacement of this portion vary periodically. The buckling spreads upwards from the bit with the increase of axial load. There is no buckling at the upper portion of the tubing where the bending moment is zero. And the contact force of this section increases only slightly with the increase of the axial load. With the increase of the deviation angle, the length of buckling portion and buckling displacement amplitude decrease, the contact force increases with the increase of load at the upper portion and its amplitude decreases at the lower buckling section, the bending moment remains zero at the upper portion and its amplitude decreases at the lower buckling portion. The buckling displacement increases with the increase of the torque, but the increment is very small.
文摘An exact forecast of the failures of a sucker rod-pumped well in a production area means much for an oilfield’s operation budget, operational arrangement and production plan. In this paper, according to the characteristics of failed sucker rod-pumped well randomness and strong outburst, with the gray GM (1,1) forecast model and the Markov forecast model combined, gray GM (1,1) forecast model is utilized to handle the primary data of an oilfield, and Markov forecast model is utilized to calculate the state transfer probability of forecast value. Then, the gray Markov forecast model considering the influence of randomness factors is formed. Field results prove that the calculation precision of this method is higher and the practicability is greater.
文摘There is a close theoretical similarity between water pressure gradients in aquifers and applied voltage gradients in aqueous solutions. A series of electric field analogue experiments has been conducted by focusing on symmetrical multi-lateral wells and dual-lateral wells of arbitrary angles between laterals. This research not only evaluates the productivity equations of a symmetrical multi-lateral well showing the effect of angles on productivity, but also proposes the concept of the multi-lateral productivity coefficient. Moreover, the multi-lateral productivity coefficient equation is designed to calculate the productivity of dual-lateral wells of variable angles, which is in turn supported by experiment. It also helps provide the experimental basis for optimizing the configuration, and building the semi-analytic productivity model, of multi-lateral wells.
基金the financial support from the Natural Science Foundation of China (NSFC, 51221003, U1262201)supported by other projects (Grant numbers: 2011ZX05009, 2013AA064803)
文摘SAGD horizontal wells are used to enhance oil recovery from heavy oil reservoirs.This technology requires precise separation between the production well and the injection well to ensure the efficient drainage of the reservoir.By studying the attitude of the downhole probe tube and the production well trajectory,an algorithm is proposed for eliminating ferromagnetic interference while drilling injection wells.A high accuracy filter circuit has been designed to correct the detected magnetic signals,which are ultra-weak,frequency-instable,and narrow-band.The directional drilling magnetic guidance system(DD-MGS) has been developed by integrating these advanced techniques.It contains a sub-system for the ranging calculation software,a magnetic source,a downhole probe tube and a sub-system for collecting & processing the detected signals.The DD-MGS has succeeded in oilfield applications.It can guide the directional drilling trajectory not only in the horizontal section but also in the build section of horizontal injection wells.This new technology has broad potential applications.
基金supported by the Key Program of National Natural Science Foundation of China (61034005)Postgraduate Scientific Research and Innovation Projects of Basic Scientific Research Operating Expensesof Ministry of Education (N100604001)Excellent Doctoral Dissertations Cultivation Project of Northeastern University
文摘It is important to achieve continuous, stable and efficient pumping well operation in actual oilfield operation. Down-hole pumping well working conditions can be monitored in real-time and a reasonable production scheme can be designed when computer diagnosis is used. However, it is difficult to make a comprehensive analysis to supply efficient technical guidance for operation of the pumping well with multiple faults of down-hole conditions, which cannot be effectively dealt with by the common methods. To solve this problem, a method based on designated component analysis (DCA) is used in this paper. Freeman chain code is used to represent the down-hole dynamometer card whose important characteristics are extracted to construct a designated mode set. A control chart is used as a basis for fault detection. The upper and lower control lines on the control chart are determined from standard samples in normal working conditions. In an incompletely orthogonal mode, the designated mode set could be divided into some subsets in which the modes are completely orthogonal. The observed data is projected into each designated mode to realize fault detection according to the upper and lower control lines. The examples show that the proposed method can effectively diagnose multiple faults of down-hole conditions.