Based on the element geochemistry and biomarkers of the oil shale from the Chang 7 sub-unit in the southern Ordos Basin,the depositional conditions and organic source of the oil shale are discussed.Biomarkers analyses...Based on the element geochemistry and biomarkers of the oil shale from the Chang 7 sub-unit in the southern Ordos Basin,the depositional conditions and organic source of the oil shale are discussed.Biomarkers analyses show that the oil shale has a homologous organic matter source,with a mix of plankton and advanced plants.U/Th and V/Ni ratios suggest that the redox condition is dominated by a reducing condition,and the degree of anoxia in the Tongchuan area is higher than that of the Xunyi area.Sr/Ba ratios illustrate that the oil shale is deposited in fresh water and the paleosalinity in the Tongchuan area is slightly higher.Fe/Ti ratios imply that the Tongchuan area underwent obvious hydrothermal fluid activities.Sr/Cu ratios show warm and humid paleoclimate in both areas.As assessed by(La/Yb)NASC,the deposition rate in the Tongchuan area is relatively lower.Fe/Co and Th/U ratios suggest that the paleo-water-depth in the Tongchuan area is deeper.The source rock could have the advance plants source,which must have close relationship with the Qinling orogeny.Comparing the paleoenvironment,the Tongchuan area has better depositional conditions,and is the key oil shale exploration area in the southern Ordos Basin.展开更多
In this study,the kerogen of oil shale from Moroccan Tarfaya deposits was isolated and the changes in the initial organic matter during the removal of the mineral matrix were examined.Chloroform extraction of the oil ...In this study,the kerogen of oil shale from Moroccan Tarfaya deposits was isolated and the changes in the initial organic matter during the removal of the mineral matrix were examined.Chloroform extraction of the oil shale increases the intensity of the peaks in the X-ray diffractograms.Infrared spectra and X-ray diffractograms reveal the presence of mineral,calcite,quartz,kaolinite,and pyrite in the mineral matrix of the oil shale.Hydrochloric and hydrofluoric acids dissolution do not alter the organic matter.The nonisothermal weight loss measurements indicate that thermal decomposition of the isolated kerogen can be described by first-order reaction.A single kinetic expression is valid over the temperature range of kerogen pyrolysis between 433K and 873K.Furthermore,the results indicate that the removal of mineral matter causes a decrease in the activation energies of the pyrolysis reactions of oil shale.展开更多
The oil shale with marine origin was first reported in 1987 from Shuanghui of the Qiangtang region. Its depositional sequence consists of brown\|black oil shale interbedded massive to thin limestone. Eleven oil shale ...The oil shale with marine origin was first reported in 1987 from Shuanghui of the Qiangtang region. Its depositional sequence consists of brown\|black oil shale interbedded massive to thin limestone. Eleven oil shale beds occur and aggregated thickness is up to 47 38m. It deposit age is confined in middle Jurassic by fossils identification. Nine samples selected from horizons with high\|organic contents have been examined by organic geochemistry approach. The oil\|shale range widely in organic carbon content (Toc), average in 8 34%, maximum values reaching 26.12%. Toc are markedly varied in vertical section. The Upper and lower members are slightly low and increase in the middle. The oil\|shale sediments are characterized by high concentration in chloroform bitumen“A”(608~18707)×10 -6 )and total hydrocarbon ((311~5272)×10 -6 ).The Rock\|Eval T \|max data (434~440℃) and vitrinite reflectance values (0.88%~1.26%) indicate that oil\|shale sequence are mature in all samples. The organic matter is predominantly made up of typeⅡ kerogen.展开更多
Successful breakthroughs have been made in shale oil exploration in several lacustrine basins in China,indicating a promising future for shale oil exploration and production.Current exploration results have revealed t...Successful breakthroughs have been made in shale oil exploration in several lacustrine basins in China,indicating a promising future for shale oil exploration and production.Current exploration results have revealed the following major conditions of lacustrine shale oil accumulation:(1)stable and widely distributed shale with a high organic abundance and appropriate thermal maturity acts as a fundamental basis for shale oil retention.This shale exhibits several critical parameters,such as total organic carbon content greater than 2%,with optimal values ranging from 3% to 4%,kerogen Ⅰ and Ⅱ_(1) as the dominant organic matter types,and vitrinite reflectance(R_(o))values greater than 0.9%(0.8% for brackish water environments).(2)Various types of reservoirs exhibiting brittleness and a certain volume of micro-nanoscale pores are critical conditions for shale oil accumulation,and these reservoirs have porosities greater than 3% to 6%.Moreover,when diagenesis is incipient,pure shales are not favorable for medium-to-high maturity shale oil enrichment,whereas tight sandstone and hybrid rocks with clay content less than 20% are favorable;however,for medium-to-late-stage diagenesis,pure shales with a clay content of 40% are favorable.(3)The retention of a large amount of high-quality hydrocarbons is the factor that best guarantees shale oil accumulation with good mobility.Free hydrocarbon content exceeding a threshold value of 2 mg/g is generally required,and the optimum value is 4 mg/g to 6 mg/g.Moreover,a gas-oil ratio exceeding a threshold value of 80 m^(3)/m^(3) is required,with the optimal value ranging from 150 m^(3)/m^(3) to 300 m^(3)/m^(3).(4)High-quality roof and floor sealing conditions are essential for the shale oil enrichment interval to maintain the overpressure and retain a sufficient amount of hydrocarbons with good quality.Lacustrine shale oil distributions exhibit the following characteristics:(1)major enrichment areas of shale oil are located in semi-deep to deep lacustrine depositional areas with external materials,such as volcanic ash fallout,hydrothermal solutions,and radioactive substances with catalytic action,as inputs;(2)intervals with“four high values and one preservation condition”govern the distribution of shale oil enrichment intervals;and(3)favorable assemblages of lithofacies/lithologies determine the distribution of enrichment area.According to preliminary estimates,China has 131×10^(8) to 163×10^(8) t of total shale oil resources with medium-to-high thermal maturity,among which 67×10^(8) to 84×10^(8) t is commercial.These resources are primarily located in the Chang 7^(1+2) interval in the Ordos Basin,Qing 1+2 members in Gulong sag in the Songliao Basin,Kongdian and Shahejie formations of Cangdong sag,Qikou sag and the Jiyang depression in the Bohai Bay Basin,and Lucaogou Formation in the Junggar Basin.展开更多
基金Projects(41173055,41772118)supported by the National Natural Science Foundation of China
文摘Based on the element geochemistry and biomarkers of the oil shale from the Chang 7 sub-unit in the southern Ordos Basin,the depositional conditions and organic source of the oil shale are discussed.Biomarkers analyses show that the oil shale has a homologous organic matter source,with a mix of plankton and advanced plants.U/Th and V/Ni ratios suggest that the redox condition is dominated by a reducing condition,and the degree of anoxia in the Tongchuan area is higher than that of the Xunyi area.Sr/Ba ratios illustrate that the oil shale is deposited in fresh water and the paleosalinity in the Tongchuan area is slightly higher.Fe/Ti ratios imply that the Tongchuan area underwent obvious hydrothermal fluid activities.Sr/Cu ratios show warm and humid paleoclimate in both areas.As assessed by(La/Yb)NASC,the deposition rate in the Tongchuan area is relatively lower.Fe/Co and Th/U ratios suggest that the paleo-water-depth in the Tongchuan area is deeper.The source rock could have the advance plants source,which must have close relationship with the Qinling orogeny.Comparing the paleoenvironment,the Tongchuan area has better depositional conditions,and is the key oil shale exploration area in the southern Ordos Basin.
文摘In this study,the kerogen of oil shale from Moroccan Tarfaya deposits was isolated and the changes in the initial organic matter during the removal of the mineral matrix were examined.Chloroform extraction of the oil shale increases the intensity of the peaks in the X-ray diffractograms.Infrared spectra and X-ray diffractograms reveal the presence of mineral,calcite,quartz,kaolinite,and pyrite in the mineral matrix of the oil shale.Hydrochloric and hydrofluoric acids dissolution do not alter the organic matter.The nonisothermal weight loss measurements indicate that thermal decomposition of the isolated kerogen can be described by first-order reaction.A single kinetic expression is valid over the temperature range of kerogen pyrolysis between 433K and 873K.Furthermore,the results indicate that the removal of mineral matter causes a decrease in the activation energies of the pyrolysis reactions of oil shale.
文摘The oil shale with marine origin was first reported in 1987 from Shuanghui of the Qiangtang region. Its depositional sequence consists of brown\|black oil shale interbedded massive to thin limestone. Eleven oil shale beds occur and aggregated thickness is up to 47 38m. It deposit age is confined in middle Jurassic by fossils identification. Nine samples selected from horizons with high\|organic contents have been examined by organic geochemistry approach. The oil\|shale range widely in organic carbon content (Toc), average in 8 34%, maximum values reaching 26.12%. Toc are markedly varied in vertical section. The Upper and lower members are slightly low and increase in the middle. The oil\|shale sediments are characterized by high concentration in chloroform bitumen“A”(608~18707)×10 -6 )and total hydrocarbon ((311~5272)×10 -6 ).The Rock\|Eval T \|max data (434~440℃) and vitrinite reflectance values (0.88%~1.26%) indicate that oil\|shale sequence are mature in all samples. The organic matter is predominantly made up of typeⅡ kerogen.
基金Major Project of National Natural Science Foundation of China(42090020,42090025)Major Project of CNPC(2019E-2601)。
文摘Successful breakthroughs have been made in shale oil exploration in several lacustrine basins in China,indicating a promising future for shale oil exploration and production.Current exploration results have revealed the following major conditions of lacustrine shale oil accumulation:(1)stable and widely distributed shale with a high organic abundance and appropriate thermal maturity acts as a fundamental basis for shale oil retention.This shale exhibits several critical parameters,such as total organic carbon content greater than 2%,with optimal values ranging from 3% to 4%,kerogen Ⅰ and Ⅱ_(1) as the dominant organic matter types,and vitrinite reflectance(R_(o))values greater than 0.9%(0.8% for brackish water environments).(2)Various types of reservoirs exhibiting brittleness and a certain volume of micro-nanoscale pores are critical conditions for shale oil accumulation,and these reservoirs have porosities greater than 3% to 6%.Moreover,when diagenesis is incipient,pure shales are not favorable for medium-to-high maturity shale oil enrichment,whereas tight sandstone and hybrid rocks with clay content less than 20% are favorable;however,for medium-to-late-stage diagenesis,pure shales with a clay content of 40% are favorable.(3)The retention of a large amount of high-quality hydrocarbons is the factor that best guarantees shale oil accumulation with good mobility.Free hydrocarbon content exceeding a threshold value of 2 mg/g is generally required,and the optimum value is 4 mg/g to 6 mg/g.Moreover,a gas-oil ratio exceeding a threshold value of 80 m^(3)/m^(3) is required,with the optimal value ranging from 150 m^(3)/m^(3) to 300 m^(3)/m^(3).(4)High-quality roof and floor sealing conditions are essential for the shale oil enrichment interval to maintain the overpressure and retain a sufficient amount of hydrocarbons with good quality.Lacustrine shale oil distributions exhibit the following characteristics:(1)major enrichment areas of shale oil are located in semi-deep to deep lacustrine depositional areas with external materials,such as volcanic ash fallout,hydrothermal solutions,and radioactive substances with catalytic action,as inputs;(2)intervals with“four high values and one preservation condition”govern the distribution of shale oil enrichment intervals;and(3)favorable assemblages of lithofacies/lithologies determine the distribution of enrichment area.According to preliminary estimates,China has 131×10^(8) to 163×10^(8) t of total shale oil resources with medium-to-high thermal maturity,among which 67×10^(8) to 84×10^(8) t is commercial.These resources are primarily located in the Chang 7^(1+2) interval in the Ordos Basin,Qing 1+2 members in Gulong sag in the Songliao Basin,Kongdian and Shahejie formations of Cangdong sag,Qikou sag and the Jiyang depression in the Bohai Bay Basin,and Lucaogou Formation in the Junggar Basin.