Several series of cracking tests in a comprehensive study were conducted on separate occasions involving all or parts of ten Canadian vacuum gas oils (VGOs) and two catalysts with bottoms-cracking or octane-barrel ca...Several series of cracking tests in a comprehensive study were conducted on separate occasions involving all or parts of ten Canadian vacuum gas oils (VGOs) and two catalysts with bottoms-cracking or octane-barrel capability. VGOs were cracked in fixed- and/or fluid-bed microactivity test (MAT) units, in an Advanced Cracking Evaluation (ACE) unit, and in a modified ARCO riser reactor. Individual yields of gas, liquid, and coke from the MATs at 55, 65, 70, and 81 wt% conversion levels were compared with their respective pilot plant data. Good linear correlations could be established between MAT and riser yields except for liquefied petroleum gas (LPG) and light cycle oil (LCO). At a given conversion, correlations existed among the fixed- and fluid-bed MAT units and the ACE for each product yield. Liquid products from the fixed or fluid-bed MAT were analyzed for hydrocarbon types, sulfur, nitrogen and density, most of which showed good agreement with those obtained from the riser study. When cracking Canadian oil-sands-derived VGOs, the bottoms-cracking catalyst containing a large-pore active matrix was found to be more suitable than the octane-barrel catalyst with smaller pores to produce higher yields of valuable distillates, but with less superior qualities (in terms of sulfur and nitrogen contents). The advantages of hydrotreating some poor feeds to improve product yields and qualities were demonstrated and discussed.展开更多
This study set out to gain a deeper understanding of a fluid catalytic cracking(FCC)coprocessing approach using canola oil mixed with bitumen-derived heavy gas oil(HGO),for the production of partially-renewable gasoli...This study set out to gain a deeper understanding of a fluid catalytic cracking(FCC)coprocessing approach using canola oil mixed with bitumen-derived heavy gas oil(HGO),for the production of partially-renewable gasoline,with respect to its composition and quality.The FCC coprocessing approach may provide an alternative solution to reducing the carbon footprint and to meet government regulatory demands for renewable transportation fuels.In this study,a mixture of 15 v%canola oil in HGO was catalytically cracked with a commercial equilibrium catalyst under typical FCC conditions.Cracking experiments were performed using a bench-scale Advanced Cracking Evaluation(ACE)unit at a fixed weight hourly space velocity of 8 h^(à1),490–530C,and catalyst/oil ratios of 4–12 g/g.The total liquid product samples were injected via an automatic sampler and a prefractionator(to removet254C)into a gas chromatographic system containing a series of columns,traps,and valves designed to separate each of the hydrocarbon types.The analyzer gives detailed hydrocarbon types of à200C gasoline,classified into paraffins,iso-paraffins,olefins,naphthenes,and aromatics by carbon number up to C_(11)(C_(10)for aromatics).For a feed cracked at a given temperature,the gasoline aromatics show the highest selectivity in terms of weight percent conversion,followed by saturated iso-paraffins,saturated naphthenes,unsaturated iso-paraffins,unsaturated naphthenes,unsaturated normal paraffins,and saturated normal paraffins.As conversion increases,both aromatics and saturated iso-paraffins increase monotonically at the expense of other components.Hydrocarbon type analysis and octane numbers with variation in feed type,process severity(temperature and catalyst/oil ratio),and conversion are also presented and discussed.展开更多
文摘Several series of cracking tests in a comprehensive study were conducted on separate occasions involving all or parts of ten Canadian vacuum gas oils (VGOs) and two catalysts with bottoms-cracking or octane-barrel capability. VGOs were cracked in fixed- and/or fluid-bed microactivity test (MAT) units, in an Advanced Cracking Evaluation (ACE) unit, and in a modified ARCO riser reactor. Individual yields of gas, liquid, and coke from the MATs at 55, 65, 70, and 81 wt% conversion levels were compared with their respective pilot plant data. Good linear correlations could be established between MAT and riser yields except for liquefied petroleum gas (LPG) and light cycle oil (LCO). At a given conversion, correlations existed among the fixed- and fluid-bed MAT units and the ACE for each product yield. Liquid products from the fixed or fluid-bed MAT were analyzed for hydrocarbon types, sulfur, nitrogen and density, most of which showed good agreement with those obtained from the riser study. When cracking Canadian oil-sands-derived VGOs, the bottoms-cracking catalyst containing a large-pore active matrix was found to be more suitable than the octane-barrel catalyst with smaller pores to produce higher yields of valuable distillates, but with less superior qualities (in terms of sulfur and nitrogen contents). The advantages of hydrotreating some poor feeds to improve product yields and qualities were demonstrated and discussed.
基金Natural Resources Canada and government of Canada's interdepartmental Program of Energy Research and Development (PERD)
文摘This study set out to gain a deeper understanding of a fluid catalytic cracking(FCC)coprocessing approach using canola oil mixed with bitumen-derived heavy gas oil(HGO),for the production of partially-renewable gasoline,with respect to its composition and quality.The FCC coprocessing approach may provide an alternative solution to reducing the carbon footprint and to meet government regulatory demands for renewable transportation fuels.In this study,a mixture of 15 v%canola oil in HGO was catalytically cracked with a commercial equilibrium catalyst under typical FCC conditions.Cracking experiments were performed using a bench-scale Advanced Cracking Evaluation(ACE)unit at a fixed weight hourly space velocity of 8 h^(à1),490–530C,and catalyst/oil ratios of 4–12 g/g.The total liquid product samples were injected via an automatic sampler and a prefractionator(to removet254C)into a gas chromatographic system containing a series of columns,traps,and valves designed to separate each of the hydrocarbon types.The analyzer gives detailed hydrocarbon types of à200C gasoline,classified into paraffins,iso-paraffins,olefins,naphthenes,and aromatics by carbon number up to C_(11)(C_(10)for aromatics).For a feed cracked at a given temperature,the gasoline aromatics show the highest selectivity in terms of weight percent conversion,followed by saturated iso-paraffins,saturated naphthenes,unsaturated iso-paraffins,unsaturated naphthenes,unsaturated normal paraffins,and saturated normal paraffins.As conversion increases,both aromatics and saturated iso-paraffins increase monotonically at the expense of other components.Hydrocarbon type analysis and octane numbers with variation in feed type,process severity(temperature and catalyst/oil ratio),and conversion are also presented and discussed.